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Summary

The calculation of reliability measures using

Markov models is required for life-critical processor-
memory-switch (PMS) structures that have standby

redundancy or that are subject to transient or inter-

mittent faults or repair. The task of specifying these

models is tedious and prone to human error because

of the large number of states and transitions required

in any reasonable system. Therefore, model specifi-
cation is a major analysis bottleneck, and model ver-

ification is a major validation problem. The general

unfamiliarity of computer architects with Markov

modeling techniques further increases the necessity

of automating the model specification.

Automation requires a general system description
language (SDL) that can accommodate new fault-

tolerant techniques and system designsl: For practi-

cality, this SDL should also provide a high level of

abstraction and be easy to learn and use.

This paper presents the first attempt to define and
implement an SDL with those characteristics. The

problems involved in the automatic specification of

Markov reliability models for arbitrary interconnec-
tion structures at the PMS level are identified and

analyzed. Solutions to these problems are generated
and implemented.

A program named ARM (Automated Reliability
Modeling) has been constructed as a research vehicle.

The ARM program uses a graphical user interface

(GUI) as its SDL. This GUI is based on a hierarchy

of windows. Some windows have graphical editing ca-
pabilities for specifying the system's communication

structure, hierarchy, reconfiguration capabilities, and

requirements. Other windows have text fields, pull-

down menus, and buttons for specifying parameters
and selecting actions.

The ARM program outputs a Markov reliability
model specification formulated for direct use by pro-
grams that generate and evaluate the model. The

advantages of such an approach include utility to a
larger class of users, who are not necessarily expert

in reliability analysis, and lower probability of human
error in the calculation.

1. Introduction

Computer systems are growing in complexity

and sophistication as multiprocessors and distributed

computers are coming into widespread use to achieve

higher performance and reliability. This growth,
which is being assisted by the availability of succes-

sively more complex building blocks, has increased

the importance of fault tolerance and system relia-

bility as design parameters. Thus, the calculation

of system reliability measures has become one of the
system design tasks. Several efforts have been re-

ported in the literature and are in progress to make
computing system reliability measures easier and

more efficient by providing designers with reliability
evaluation tools.

The analysis and evaluation of system reliability
for complex computer systems is very tedious and

prone to error even for experienced reliability ana-

lysts. The model of a system with n components can

have up to 2n states if it only has permanent faults

and they are not removed. Therefore, the model of a
system with just 10 components can have more than
1000 states.

With the exception of the ADVISER (Advanced

Interactive Symbolic Evaluator of Reliability) and
the RMG (Reliability Model Generator) programs,

discussed in subsection 1.2, existing software tools

usually assume an understanding of the failure modes

and therefore are more in the nature of computa-

tional aids once the preliminary system decomposi-

tion and analysis have been manually achieved. Al-
though ADVISER does not make this assumption,

it uses combinatorial techniques, and it is therefore

limited in the complexity of systems and fault types

which it can analyze. The RMG program lacks a

high-level system description language (SDL) that is
easy to learn and use.

More advanced techniques are required to analyze

computer architectures that use standby redun-
dancy, can be repaired, or are susceptible to tran-

sient or intermittent faults. One possibility is the
Markov model, which is discussed in subsection 1.1.

The advantages offered by Markov models are that

they are widely used among reliability analysts and

that several programs, which are discussed in sub-
section 1.2, have been developed to solve them. How-

ever, Markov models cannot be used to analyze
nonexponentially distributed concurrent events. For

example, a fault that arrives while the system is re-
configuring itself around a previous fault would be

represented by a transition to a state in which two

faults are present. This new state would not take

into account the time that the system has already
spent reconfiguring from the first fault.

Another analysis possibility is the extended sto-

chastic Petri net (ESPN) described in Dugan et al.

(1984). The advantages offered by the ESPN are that

it can analyze concurrent events and can model sys-
tems at a lower level of detail than Markov models.

The ESPN "tokens" can be simultaneously enabled



to moveconcurrentlyat independenttransitiontimes.
The low-levelmodelingcapabilityis dueto mecha-
nisms,suchasqueuesandcounters,whichcansimu-
late thealgorithmof theprocessbeingmodeled.To
analyticallyornumericallysolveanESPN,it mustbe
convertedto a Markovmodel.However,if tokensare
movingconcurrentlyat independenttransitiontimes
that arenot exponentiallydistributed,the process
becomesnon-Markovian(i.e., the transitionproba-
bilitiesdependonpaststates).Thissituationmakes
theconversionimpossible.In general,anESPNmust
besolvedby simulation.

Simulationscanincludeany levelof detail,and
they are thus flexible; however,for straightfor-
wardMonteCarlosimulations,manyrepetitionsare
neededto ensureaccuracy.For example,in life-
criticalapplicationsthat requireaprobabilityoffail-
ure of 10-9 with a relativeerrorof no morethan
10percentwithinaconfidenceintervalof 95percent,
approximately3.8× 1011simulationrepetitionsare
necessary(Liceaga1992).In general,theseapplica-
tionsrequireaMarkovmodelbecauseit canbesolved
analyticallyor numerically.

Thispaperdefinesa general,high-levelSDLthat
is easyto learn and use, identifiesand analyzes
theproblemsinvolvedin theautomaticspecification
of Markovreliabilitymodelsfor arbitrary intercon-
nectionstructuresat the processor-memory-switch
(PMS) level,1 and generatesand implementssolu,
tionsto theseproblems.Theresultsof thisresearch
havebeen implementedand experimentallyvali-
datedin theARM(AutomatedReliabilityModeling)
program.

The ARM programusesa graphicaluserinter-
face(GUI) as its SDL. This GUI is basedon a
hierarchyofwindowsimplementedin theC program-
ming language using the Transportable Application

Environment Plus (TAE Plus) user interface devel-

opment tool for building X window-based applica-

tions (Szczur 1990). Some windows have graphical

editing capabilities for specifying the system's com-
munication structure, hierarchy, reconfiguration ca-

pabilities, and requirements. These window's have

been implemented using the schematic drawing edi-

tor Schem (Vlissides 1990). Other windows have text

fields, pull-down menus, and buttons for specifying

parameters and selecting actions.

The ARM software outputs a Markov reliabil-

ity model specification formulated for direct Use by

programs that generate themodei. The advantages

1 Components are not limited to being a processor, memory, or

switch.

of such an approach are utility to a larger class of

users, who are not necessarily expert in reliability

analysis, and lower probability of human error in the
calculation.

A brief background on reliability calculation at
the PMS level using Markov models is presented in
subsection 1.1. Previous work in the specification,

generation, and evaluation of reliability models is

surveyed in subsection 1.2. The goals for ARM are
stated and compared with those of previous efforts

in subsection 1.3. The organization of this paper is

presented in subsection 1.4.

1.1. Background

Present-day computer systems and the process

of designing and analyzing them can be viewed at
various levels of detail. Four levels, which are defined

in work by Siewiorek et al. (1982), range from the

circuit level, through the logic and programming
levels, to the PMS level. The PMS-level view of

digital systems is one in which the primitives include
processors, memories, switches, and transducers, as

opposed to the logic level in which the primitives

include gates, registers, and multiplexers.

Hardware components are susceptible to hard
and soft faults as discussed by Siewiorek and Swarz

(1992). A fault is an incorrect state of hardware or
software resulting from a physical change in the hard-

ware, interference from the environment, or design

mistakes (Laprie 1985). Hard or permanent faults are
continuous and stable, and they result from an irre-

versible physical change. Soft faults can be transient
or intermittent. Transient faults result from tempo-

rary environmental conditions. Intermittent faults

are occasionally active because of unstable hardware
or varying hardware or software states (e.g., as a
function of load or activity). Depending on whether

the intermittent fault is benign or active, the output

of the component will be correct or not, respectively.

Fault-tolerant computer systems can be affected

by a limited set of faults without interruptions in

their operation. Some computer systems achieve
fault tolerance by using redundant groups of com-

ponents to perform the same operations. The sys-
tem must determine which is the correct output

using diagnostics or majority voting. The various re-

dundancy techniques are discussed in Siewiorek and

Swarz (1992), and the more relevant ones are defined
below:

Static redundancy: Faults are masked through

a majority vote involving a fixed group of re-
dundant components. Thus, when the number



of faulty componentsreachesthe maximum
that canbe tolerated,anyfurther faultswill
causeerrorsat the output. Figure 1.1 il-
lustratesa staticallyredundantprocessor(P)
triad (a groupof threecomponents)and its
voter(V).

Figure1.1.Staticallyredundantprocessortriad.

Dynamic redundancy: Faults are not masked
from causing errors at the output, but the

faulty components are detected, isolated, and

reconfigured out of the system. The faulty

components are replaced when spares are
available. Figure 1.2 illustrates a dynami-

cally redundant active processor (AP) with m

spares (SP).

components are reconfigured out of the system

by excluding them from the voting process.

Thus, when the number of faulty components
reaches the maximum that can be tolerated,

any further faults tha_ occur before a faulty

component is reconfigured out of the vot-

ing process will cause errors at the output.

Figure 1.4 illustrates adaptive voting with

n processors and their voter (AV).

Figure 1.2. Dynamically redundant active processor with rn

spares.

Hybrid redundancy: Faults are masked

through a majority vote involving a group of

redundant components which are reconfigured
when spares are available. Thus, when the

number of faulty components reaches the max-

imum that can be tolerated, any further faults

that occur before a faulty component is re-

placed by a spare will cause errors at the out-
put. Figure 1.3 illustrates a hybrid-redundant

triad of active processors with m spares.

Adaptive voting: Faults are masked through
a majority vote involving a variable group of

redundant components without spares. Faulty

5-a

m

Figure 1.3. Hybrid-redundant triad of active processors with
m spares.

51

Figure 1.4. Adaptive voting with n processors.

Adaptive hybrid: Faults are masked through

a majority vote involving a variable group
of redundant components which are replaced

when spares are available. If spares are not

available, faulty components are reconfigured

out of the system by excluding them from the
voting process. Thus, when the number of

faulty components reaches the maximum that



canbetolerated,anyfurtherfaultsthat occur
beforea faulty componentis replacedby a
spareorreconfiguredoutof thevotingprocess
will causeerrorsat the output. Figure1.5
illustratesanadaptivehybridn-tuple of active

processors with m spares.

m

Figure 1.5. Adaptive hybrid n-tuple of active processors with
m spares.

For example, if a triad that uses hybrid redun-

dancy "recovers" from a fault by replacing the faulty

component with a spare, it can then tolerate a sec-
ond fault. The following two definitions are those

that will be used in this paper, but neither term has

a universally accepted definition:

Recovery: The process of detecting, isolating,
and reconfiguring a faulty component out of

the system.

Coverage: The probability that the system can

survive a fault in a component and successfully

recover. (If the system can always recover, it

has a "perfect" coverage of 1.)

Spares are sometimes left unpowered until they

become part of the active configuration to reduce

their failure rates (Avi_ienis et al. 1971). They are
sometimes said to bc cold if their failure rates are

assumed to be 0, warm if their failure rates are
reduced but not 0, or hot if their failure rates arc

not reduced (Butler ami-Johnson 1990).

Reliability measures are defined in terms of prob-

abilities because the failure processes in hardware

4

components are nondeterministic. These various
measures are discussed in Siewiorek and Swarz

(1992). The more relevant ones are defined below:

Reliability: The conditional probability R(t)

that the system is operational throughout the

interval [0, t] given that it was operational

at time 0. (This measure is a nonincreasing

function whose initial value is 1.)

Availability: The probability A(t) that the
system is operational at time t.

Mean time to failure (MTTF): The expected

time of the first system failure assuming a new

(perfect) system at time 0.

Mean time to repair (MTTR): The expected

time for repair of a failed system.

Mean time between failures (MTBF): The ex-
pected time between failures in systems with

repair.

Availability is typically used as a figure of merit in

systems in which service can be delayed or denied for
short periods to perform preventive maintenance or

repair without serious consequences. The availability

is important in the calculation of system life-cycle

costs. If the limit of A(t) exists as t goes to infinity,
it expresses the expected fraction of time that the

system is available to perform useful computations

and has the following form:

MTTF
lira A (t) -

t-_ MTBF

The MTBF is given by:

MTBF = MTTF + MTTR

Reliability is used to describe systems in which re-

pair is typically infeasible, such as space applications.

The MTTF can be derived from R(t) as follows:

MTTF = R(t) dt

The most commonly used reliability function . for
a single component, which is based on a Poissonpro-

cess with an exponential distribution, is called the

exponential reliability function, and it has the form

R (t) = e -At

where ,_ is the hazard or failure rate. The failure rate

is a constant that reflects the quality of the compo-

nent and is usually expressed in failures per million



hoursfor high-qualitycomponents.The exponen-
tial reliability functionis usedwhenthe failurerate
is time independent,suchaswhencomponentsdo
notage.Afteraburn-inperiod,permanentfaultsin
electroniccomponentsoftenfollowa relativelycon-
stant failurerate. The MTTF for the exponential
reliabilityfunctionhasthefollowingform:

1
MTTF = -

A

Manyother reliability functions have been formu-

lated. The second most common reliability function,

which is based on the Weibull distribution, is called
the Weibull reliability function, and it has the form

R(t) =e -(xt)_

where A in this case is the scale parameter and

a is the shape parameter. (Other reparameterized
forms are also common.) It is equivalent to the

exponential function when a is 1. The Weibull

reliability function is used when the failure rate is
time dependent. Permanent faults for components

that age can be described using an increasing failure

rate (a > 1). In that case, the system is not as

good as new when repair takes place. Data presented

in McConnel (1981) and Castillo, McConnel, and
Siewiorek (1982) indicate that transient faults follow

a decreasing failure rate (a < 1).

The failure processes of different components are

assumed to be independent of one another. This as-

sumption is not strictly true, such as when electrical,

mechanical, or thermal conditions in one component

affect other components in its proximity. However,
the assumption is close enough in practice to be used

to simplify the analysis.

The state of a system represents all that must be

known to describe the system at any instant. As the
system changes, such as when components fail or are

repaired, so does its state. These changes of state

are called state transitions. If all possible states are

assumed to be known, a discrete-state system model
is used; if this assumption is not made, a continuous-

state system model is used. If the state transition

times are assumed to be restricted to some multiple

of a given time interval, a discrete-time system model
is used. If it is assumed that state transitions can

occur at any time, a continuous-time system model
is used. Systems can be classified according to their

state space and time parameter as the following:

discrete state and discrete time

discrete state and continuous time

continuous state and discrete time

continuous state and continuous time

For a discrete-state system, a state transition dia-

gram (STD) may be drawn. This transition diagram

is a directed graph. The nodes correspond to sys-
tem states, and the directed arcs indicate allowable
state transitions. Each arc has a label that iden-

tifies the distribution of the conditional probability

that the system will go from the originating node to

the destination node of that directed arc given the

previous history of the system and that the system

was initially at the originating node. The label used
depends on the distribution. For example, the label

could be the hazard rate for the exponential distribu-

tion, the scale and shape parameters for the Weibull

distribution, or the mean and standard deviation for

a general distribution.

If transitions are allowed from failed states to

operational states, then the STD is an availability

graph and A(t) may be obtained from it. The
term R(t) may be obtained by specifically disallowing

failed to working state transitions from the STD, thus

making it a reliability graph.

A reliability graph of a triad is given in figure 1.6.
In this model, it is assumed that the components have

a perfect coverage of 1. The horizontal transitions

represent fault arrivals. These transitions follow an

exponential distribution. Consequently, A represents

the constant hazard rate. The coefficients of A repre-
sent the number of working processors being actively

used in the configuration. The vertical transition rep-

resents recovery from a fault. This recovery follows

a general distribution. Consequently, tt and a repre-
sent its mean and standard deviation. A competition

exists between the two transitions that are leaving

state 2. If the second fault wins the competition,
then system failure occurs; however, if the removal

of the first fault wins the competition, then the sys-

tem reconfigures into a simplex (i.e., it only uses one

of the two working components). Unless otherwise

noted in the state descriptions, all working proces-
sors are being actively used in the configuration.

The information conveyed by the STD is often

summarized in a square matrix called the state tran-

sition matrix (STM). The STM element in row i and
column j is the label on the arc from state i to state j.

The terminology used in this paper to denote the

various types of Markov models and the assumptions
they are based on are defined below. The hierarchy

of Markov models is illustrated in figure 1.7.
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Figure 1.6. Reliability graph (state transition diagram) of a triad.
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Figure 1.7. Hierarchy of Markov models.

Nonhomogeneous

(global time dependent)

Markov model: A stochastic process model

whose future state depends only upon the
present state and not upon the state history

that led to its present state.

Homogeneous Markov model: A Markov

model whose state transition probabilities are

time independent. For the continuous-time
homogeneous Markov modeI I this implies that

She state transition times follow an expo-

nential distribution. This type of model is

discussed in Chung (1967) and Romanovsky

(1970) and applied to computer systems in
Makam and Avi_ienis (1982).

Semi-Markov model: A Markov model whose

state transition probabilities depend upon the

time spent in the present state, which is called
the local time. For the continuous-time semi-

Markov model, this implies that the state

transition times do not follow an exponen-

tial distribution; they might follow a Weibull

distribution or any other distribution. This

type of model is discussed and applied to

computer systems in White (1986).

Nonhomogeneous Markov model: A Markov
model whose state transition probabilities

depend upon the time since the system was
first put into operation , which is called the

global time. For the continuous-time non-

homogeneous Markov model, this implies that

the state transition times do not follow an
exponential distribution. Often these times

are assumed to follow a Weibull distribution,
but they can follow any other distribution.

This type of model is discussed and applied to

computer systems in Trivedi and Geist (1981).

The probability of being in a particular state

for a discrete-state, continuous-time Markov model

can be expressed with a differential equation. The
set of simultaneous differential equations which de-
scribe these models are called the continuous-time

Chapman-Kolmogorov equations. For homogeneous



Markovmodels,theseequationscanbesolvedusing
matrixor Laplacetransformations.

If the state transition probabilitiesare time
dependent,it may be quite difficult to obtain
explicitsolutionsto the continuous-timeChapman-
Kolmogorovequations.Obtainingthe exactproba-
bility of reachinga statethrougha particularpath
of transitionsrequiresthe solutionof a multiplein-
tegral,in whicheachintegralrepresentstheproba-
bility of makingoneof the transitionsin the path.
Oftenthe integralsareapproximatedusingnumer-
ical integrationtechniques(Stifler, Bryant, and
Guccione1979).An alternativemethodis to approx-
imatethecontinuous-timemodelwith discrete-time
equivalents(SiewiorekandSwarz1992).Themajor
difficultywith thesecondmethodis that manytran-
sitionratesthat areeffectivelyzerointhecontinuous-
timemodelassumesmall,but nonzero,probabilities
in a discrete-timemodel.

1.2. Previous Work

Several programs exist, such as ARIES, SURF,

CARE III, HARP, SURE, PAWS, STEM, and

ASSURE, which use Markov models to evaluate the

reliability and/or availability of systems that use

standby redundancy or can be repaired and that are
susceptible to hard, transient, or intermittent faults.

All these programs can evaluate reliability. The

ARIES, SURF, and HARP programs can also evalu-

ate availability. Except for CARE III and ASSURE,
they all have the state transition matrix as one of the

system specification methods.

The ADVISER (Advanced Interactive Symbolic
Evaluator of Reliability) program, described in Kini

and Siewiorek (1982), automatically generates sym-
bolic reliability functions for PMS structures. The

program assumptions are that all the faults are per-

manent and stochastically independent, the PMS
system has a perfect coverage, and the failed com-

ponents are not repaired and returned to a nonfaulty

state. The program's primary input is the intercon-

nection graph of the PMS structure. Other program
inputs describe the components of the PMS struc-

ture by their types, reliability functions, internal port

connections, and ability to communicate with com-

ponents of the same type. The program also takes

as input the requirements for the system and its sub-

systems or clusters in the form of modified Boolean
expressions.

The ARIES (Automated Reliability Interactive

Estimation System) program, described in Makam,

Avi_ienis, and Grusas (1982), is restricted to homo-
geneous Markov models. The system can be specified

using a state transition matrix or as a series of inde-

pendent subsystems each containing identical mod-
ules that either are active or serve as spares. The

program uses a matrix transformation solution tech-

nique that assumes distinct eigenvalues for the state
transition matrix.

Described in Landrault and Laprie (1978), the
SURF program can solve semi-Markov models that

use exponential distributions or nonexponential dis-

tributions that are related to the exponential (e.g.,

Gamma, Erlang, and others). The method of stages

(Cox and Miller 1965) is used to produce a ho-
mogeneous Markov model. Matrix transformations

are used to obtain time-independent values, such as

MTTF and the limiting availability. The Laplace

transform is used to obtain time-dependent values,

such as availability and reliability.

The CARE III (Computer-Aided Reliability Es-

timation) program, described in Bavuso, Petersen,
and Rose (1984), can evaluate the reliability of sys-

tems that use reconfiguration to tolerate component

faults but that do not repair the faulty compo-

nents. The program uses a behavioral decompo-
sition/aggregation solution technique described in

Trivedi and Geist (1981). This technique assumes the
fault-occurrence behavior is composed of relatively

infrequent (slow) events, and the fault-handling

behavior is composed of relatively frequent (fast)

events. The fault-handling behavior is separately an-
alyzed using a fixed semi-Markov model that can

use exponential and uniform distributions. The

fault-occurrence behavior is analyzed using an ag-

gregate nonhomogeneous Markov model that can use
exponential and Weibull distributions. The fault-

handling behavior is reflected by parameters in the

aggregate nonhomogeneous Markov model. Numer-
ical integration techniques are used to solve these
Markov models. The fault-occurrence behavior is

specified using extended fault trees, which are auto-

matically converted to the nonhomogeneous Markov
model. The fault-handling behavior is specified

by providing the transition parameters of the fixed
semi-Markov model.

For HARP (Hybrid Automated Reliability Pre-

dictor), described in Dugan et al. (1986) and Howell

et al. (1990), the state transition probabilities can

have exponential, uniform, Weibull, or general dis-

tributions. (A histogram must be provided for gen-
eral distributions.) If the state transition matrix is

given by the user, HARP can only evaluate the avail-

ability of systems with constant repair rates.. The

HARP program has several additional methods of

specifying the fault-occurrence behavior (e.g., fault
trees), all of which are automatically converted to a
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nonhomogeneousMarkovmodel.Thefault-handling
behaviorcanalsobespecifiedbyprovidingthetran-
sition parametersof one of severalmodels. The
programusesthe samebehavioraldecomposition/
aggregationsolution techniqueas CARE III, but
the variousmodelsaresolvedin a hybrid fashion.
Markovmodelsaresolvedusingnumericalintegra-
tion techniques,andextendedstochasticPetrinets
aresolvedby simulation.

The SURE (Semi-MarkovUnreliability Range
Evaluator)program,describedinButler(1992),eval-
uatesthe unreliabilityupperand lowerboundsof
semi-Markovmodels.It usesnewmathematicalthe-
oremsprovedinWhite (1986)andLee(1985).These
theoremsprovidea techniqueforboundingtheprob-
ability of traversinga specificpath in the model
within a specifiedtime. By applyingthe theorems
to everypathof themodel,theprobabilitythat the
systemreachesanydeathstatecanbe determined
within usuallyveryclosebounds.Thesetheorems
assumethat slow(with respectto themissiontime)
exponentialtransitionsdescribethe occurrenceof
faults,andfasttransitionsthat followageneraldis-
tribution specifiedby its meanand standarddevi-
ation describethe recoveryprocess.Theprogram
providestheoptionof pruningthemodelduringits
evaluationby conservativelyassumingsystemfail-
ureoncethe probabilityof reachinga statefallsbe-
lowaspecifiedor automaticallyselectedprunelevel.
Faultscanbemodeledaspermanent,transient,or
intermittentas long as thereare no loopsin the
modelwhichonly havefast transitions. The only
input methodof theprogramis the statetransition
matrix.

Describedin Butler and Stevenson(1988),the
PAWS (Pad6ApproximationWith Scaling)and
STEM(ScaledTaylorExponentialMatrix)programs
evaluatethe unreliabilityof homogeneousMarkov
models.Theinput languagefor thesetwoprograms
isessentiallythesameasfortheSUREprogram.Al-
thoughthe numericaltechniquesusedin thesepro-
gramsarenot asfastasthe SUREtechnique,they
aresuitablefor loopswith onlyfasttransitions.

The ASSIST(AbstractSemi-MarkovSpecifica-
tion Interfaceto the SURETool) program,which
usesanabstractlanguagefor specifyingMark_vre-
liability models,is describedin Butler (1986).The
languagehasstatementsto specifythe statespace,
by definingthestatevariablesandtheir range;the
startstate,bytheinitial valuesofthestatevariables;
thedeathstates,byaBooleanexpressionofthestate
variables;andthestatetransitions,byasetofif-then
rulesthat define,in termsof thestatevariables,the
possibletransitions,their rates,and their destina-

tion states. This languagehasbeenimplemented
in the ASSISTprogramto generateMarkovrelia-
bility modelsin theSUREinput language(Johnson
1986).Theimplementationprovidesthreeoptional
statespacereductiontechniques.Thefirst technique
ispruningthemodelduringits generationbyconser-
vativelyassumingsystemfailureonceastatesatisfies
apruneconditionspecifiedasaBooleanexpressionof
thestatevariables(Johnson1988).Thesecondtech-
niqueis trimmingthemodelby conservativelyalter-
ingstateswithoutgoingrecoverytransitions(White
andPalumbo1990).Theoutgoingfailuretransitions
ofthealteredstatesthat donotgoto deathstatesare
changedto goto asingletrim state.Thethird tech-
niquecombinespruningand trimmingby changing
all statesthat meeta pruneconditionto trim states.
Eachtrim statehasa singletransitionto a death
stateat sometrim rate. Thetrim ratemustbe the
sumof thefailureratesof all remainingcomponents.

The ASSUREprogram,describedin Palumbo
and Nicol (1990),translatesan extensionof the
ASSISTlanguageinto C code,whichis linkedwith
SUREsolutionproceduresandexecutedto generate
andsolvethe model. This reducesthestoragere-
quiredbecausecompletelyexpandedstatesaredis-
cardedsincethe only stateof consequenceat any
time is the state beingexpanded. The extended
ASSISTlanguageallowsthe useof user-definedC
functionsto specifythe deathstatesand the state
transitions.Thisspecificationincreasesthesizeand
complexityof the systemsthat canbe practically
modeledbecauseit makesthe modelspecification
morecompact.

The RMG (ReliabilityModel Generator)pro-
gramisspecifiedin CohenandMcCann(1990).Asit
isnowimplemented,LISPexpressionsarerequiredto
specifythesystemfailureconditionswhoseprobabil-
itiesareto beevaluatedandeachcomponent'slocal
reliabilitymodel(LRM) and function. An LRM is
specifiedin termsofthecomponentmodes,thetran-
sitionsbetweenmodes,andthecharacteristic(good,
bad,or none)of theoutputsin termsof the modes
and the Valueor characteristicof the inputs. A
graphicalinput is usedto specifythe interconnec-
tion graphof thePMSstructure. It aggregatesthe
LRM's to specifya Markovreliabilitymodelin the
ASSISTlanguagefor the systemfailureconditions
given.

Table1.1givestheprimaryinputsandoutputsof
the programsdescribedin thissubsection.Noneof
theseprogramsis ableto generatea Markovmodel
or itsspecificationusingahigh-levelSDLthat iseasy
to learnanduse.



Table1.1.SummaryofPreviousWork

Programname Primaryinputs Primaryoutputs

ADVISER PMSstructuC'g Symbolicreliabilityfunction

ARIES HomogeneousMarkovmodel Reliabilityoravailabilityestimate

SURF Semi-Markovmodel Reliabilityoravailabilityestimate

CAREIII Faulttreeandsemi-Markovmodelparameters Reliabilityestimate

HARP FaulttreeornonhomogeneousMarkovmodel Reliabilityoravailabilityestimate

SURE Semi-Markovmodel Reliabilitybounds

PAWS/STEM HomogeneousMarkovmodel Reliabilityestimate
ASSIST Semi-Markovmodelspecification Semi-Markovmodel

ReliabilityboundsASSURE Semi-Markovmodelspecification

RMG LRM's,PMSstructure,andsystemfailureconditions Semi-Markovmodelspecification

1.3. Motivation

Thegoalof thisresearchanddevelopmenteffort
is to providethe computerarchitecta powerfuland
easy-to-usesoftwaretool that will assumethe bur-
denof anadvancedreliabilityanalysisthat consid-
ersintermittent,transient,andpermanentfaultsfor
computersystemsofhighcomplexityandsophistica-
tion. ThePMSlevelof computersystemdescription
wasselectedbecauseit is the highestlevelviewof
digital systemsandthereforethe easiestto specify
and it is wellknownto computerarchitects.The
Markovmodeltechniquewasselectedbecauseit is
powerfulenoughto accuratelymodelmostsituations,
it iswidelyusedamongreliabilityanalysts,andthese
modelscanbeevaluatedby severalprogramsthat
havebeendeveloped.

Previouseffortshavebeenlimitedin oneof three
ways.Mosteffortsprovidedacomputationalaidonce
thepreliminarysystemdecompositionandreliability
analysishadbeenmanuallyachieved.Alternatively,
computersystemsof lesscomplexityandsophistica-
tion wereconsideredwithouttransientandintermit-
tent faults,or theydid notprovidea high-levelSDL
that is easyto learnanduse.

1.4. Organization

The GUI is defined and illustrated in section 2.

The problems involved in the automatic specification

of Markov reliability models are identified and ana-

lyzed in section 3. Examples of GUI applications and

their results are given in section 4. An analysis of this
approach is presented in section 5. Conclusions are

drawn in section 6. The algorithms used by the ARM

program are shown in the appendix.

2. Graphical User Interface (GUI)

Definition

The GUI is the first of four steps in the automated
reliability modeling process proposed in this paper.

The second step is the automated specification of

the model in the ASSIST language. This step was

implemented in the ARM program. The last two

steps, the automated generation and evaluation of
the model, have already been implemented. The

third step has been implemented in the ASSIST

program, and the fourth step has been implemented

in the SURE, PAWS, and STEM programs.

In order of importance, the major goals of the
GUI are defined below:

General: To allow current and future fault-

tolerant techniques and system designs to be
accommodated

Hierarchical: To allow systems and subsys-

tems to be defined in terms of their subsys-

tems and components, respectively

Compact: To allow subsystem classes to only

be defined once with their component types
as formal parameters

Subsystems are in the same class if they have the

same hierarchy and requirements (e.g., triads that

require two of their three components). Subsystems

are of the same type if they are in the same class, are
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composed of the same component types, and have

the same recovery parameters, if any (e.g., processor

triads). Componentsare of the same type if they have
the same function and parameters (e.g., processors).

These categories of subsystems and components are
summarized in table 2.1. For the sake of generality,

the GUI does not predefine any category.

Table 2.1. Categories of Subsystems and Components

Category Common attributes

Subsystem class Hierarchy
Requirements

Subsystem type Subsystem class
Component types
Recovery parameters

Component type Function
Parameters

Each category is represented by an identifier
that starts with a letter and can contain letters,

underscores (_), and digits (e.g., a component type
could be represented by p). A subsystem identifier
can also end with a set of parentheses that enclose a

list of parameters separated by commas. Formal pa-

rameters, which are identifiers that are not used to

represent a category or anything else, are used in the

identifier of a subsystem class (e.g., T(x)). Compo-

nent types are used instead of the formal parameters

in the identifier of a subsystem type (e.g., T(p))'

Type identifiers can be either (a) preceded by an

integer greater than 1 to represent multiple elements

of the same type (e.g., 2T(p)) or (b) followed by a

period and a list of subranges and/or integer numbers

asterisk (*) denotes parts that are always required.)

in the range from 1 to the number of elements

of that type, which are separated by commas to
represent specific elements of the same type (e.g.,

T(p).l,2), but not both (a) and _ (b). A subrange

would be specified by two positive integer numbers

separated by a dash, with the larger one on the right
(e.g., p.l-3). Unless elements are assigned specific

numbers, they are given the lowest positive numbers

available (e.g., the components represented by 2p

could be assigned the numbers 1 and 2).

The system's description is divided into require-

ments, architecture, and parameters. Th e require-
ments depend on the application of the system. How
the system was designed determines the architecture.

The technology used to implement the system com-

ponents determines the parameter values (e.g., fail-

ure rates). The sources of the major GUI input
categories are summarized in table 2.2. Figure 2.1

shows the hierarchy of the system description. The

actual GUI inputs are the leaves of the tree shown in

figure 2.1.

Table 2.2. Sources of Major GUI Input Categories
: r

Major GUI input category Source

Requirements Application

Architecture Design

Parameters Implementation technology

The GUI starts by displaying the main window

shown in figure 2.2. It contains text fields for entering

the system name and the name of the current selec-
tion; the graphs, parameters, and model pull-down
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Figure 2.2. Main window.

menus; and a button to quit the GUI. The current

selection, which is the initial name used by win-
dows that describe a component type, subsystem

type, or reconfiguration, changes automatically to

the last name entered in the first text field of any

such window, but it can also be changed manually.

The graphs menu, shown in figure 2.3, displays
a window for editing the graphs described in sub-

section 2.1. The parameters menu, shown in fig-

ure 2.4, displays windows, with text fields and but-

tons for parameter specification, which are described

in subsection 2.2. The model menu, shown in fig-
ure 2.5, executes the programs that specify, generate,

and evaluate the Maxkov model, based on the sys-

tem description given through the GUI. The ARM

program will notify the user if the system descrip-
tion is incomplete (e.g., if the external structure has

not been given) and not specify the model. Subsec-

tion 2.3 presents a summary of the GUI and recom-
mendations on how to reduce the number of errors

in the system description.

2.1. Graphs

The following subsections describe the graphs
used for specifying the system's communication

structure, hierarchy, reconfiguration capabilities, and
requirements.

2. i. 1. Structure

Graphs with unidirectional and bidirectional

edges describe the system's external and internal
communication structures. It is assumed that com-

ponents which communicate and are critical (i.e., re-

quired for the system to be operational) must be

External Structure

Internal Structure

P_/_ical Hierarchy

Logical Hierare] W

Strste_ Ree_figttratio_

Reqttire_ent

Figure 2.3. Graphs menu.
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Co_p_ent Repair

•ab_Fste_ Recovery

•Fste_ Beconfiguratio_
Model 8e_eratio_

Model Evaluation

Figure 2.4. Parameters menu.

_eeify li
I]enerate Ii

.....Ij

Figure 2.5. Model menu.

able to continue communicating. If this assump-
tion is not true, the result will be conservative. The

main purpose of the communication structure de-

scription is to analyze which component failures will

prevent communication between critical components
and therefore cause system failure.
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2.1.1.1. External. A system's external structure
is defined as the communication interconnection of

all its components. The external structure graph

is required for all systems because it is also used

to identify the system components, their types, and

their connectivity equivalence classes (defined in sub-

section 3.2.1). In the external structure graph, the
nodes represent one or more components of the same

type. Unless specific numbers are assigned, the com-

ponents represented by the same node axe assigned

a continuous range of numbers (e.g., the components

represented by a node labeled 3p could be assigned

the numbers 1 through 3). A unidirectional edge be-
tween two nodes indicates that all the components of
the source node can communicate with all the com-

ponents of the target node. A bidirectional edge be-

tween two nodes indicates that all the components of
one node can communicate with all the components
of the other node and vice versa.

A plus sign (+) at the end of a component iden-
tifier indicates that this is a self-talking component.

A majority of componcnts of the same type are pas-

sive, and they do not need to communicate. Exam-
ples of passive components are memories, buses, and

input/output transducers. Self-talking components
need to exchange information amongst one another.

Examples of self-talking components are processors,

direct-memory-access device controllers, and other

"smart" controllers. If not specified, the default is

for components to be passive and not communicate

with their own type. This information is needed to

prevent ARM from requiring communication paths
between components of the same type that never ex-

change information. Not taking this behavior into
account would lead to a pessimistic evaluation of the

system reliability.

An asterisk (*) at the end of a component iden-

tifier indicates that every input port of this compo-
nent is internally connected to all output ports of

the component. Most buses have this internal struc-

ture. If not indicated in this way or as described in
subsection 2.1.1.2, the default is for every port of a

component to be disconnected from the other ports

of the component.

The graph in figure 2.6 describes the external

structure of a multiprocessor composed of six pro-

cessors p, six memories m, six watchdog timers

w, four transmit buses tb, four receive buses rb,

and four watchdog buses wb. The processors and

watchdog timers need to communicate with com-
ponents of their own type. TWne processors com-

municate through the memory as described in sub-

section 2.1.1.2. The watchdog timers communicate

through the watchdog bus. All the buses have the

12

typical internal structure described above. This

multiprocessor will be used as a running example

throughout this section.

6p+

6m

Figure 2.6. External structure of a multiprocessor.

2.1.1.2. Internal. A component's internal struc-
ture is defined as the communication interconnection

of its ports. This internal structure of one or more

components can be described by a graph inside a

component with its external port connections labeled
on the outside of the component. The absence of an

edge between two ports indicates that they cannot

communicate through this component.

The internal structure graph Of a component is

used to determine which of its neighbors can com-

municate through it. Two components are neighbors

if they are interconnected in the external structure

graph. If none of a component's neighbors can com-
municate through it, no internal structure needs to

be specified because by default a component cannot
be used for communication by its neighbors.

The internal structure of each of the six memories

is described by the graph in figure 2.7. This struc-

ture indicates that the processors can communicate

through the memory.

2.1.2. Hierarchy

A system can have physical and/or logical hier-
archies that contain physical and logical subsystems,

respectively. These hierarchies axe different partial
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Figure 2.7. Internal structure of each of the six memory
components.

views of the same system; therefore, a component of

a physical subsystem may also be a component of a

logical subsystem. The difference between a physical
and a logical subsystem is in their ability to be recon-

figured and in how their failure affects the system's

operation, as explained in the next two subsections.
If present, the system hierarchies show what sub-

systems are in the initial system configuration and

define the composition of the subsystems that may
be part of those hierarchies.

A group of components with its own set of re-

quirements constitutes a subsystem. If a subsystem
does not meet its requirements, then none of its com-

ponents are able to perform their function. If a subset

of the system components, but not all of them, de-

pends on one or more components in the subset, the

subset needs to be defined as a subsystem by giving
its hierarchy and requirement graphs. The subsystem

defined for the subset must be placed in either the ap-

propriate system hierarchy graph (if it is part of the

initial system configuration) or the destination node

of a system reconfiguration graph (if it can be part of
a future system configuration). The system physical

or logical hierarchy graphs can only be given if there

are physical or logical subsystems, respectively.

Redundant subsystems are composed of multi-
ple components with the same function to increase

their reliability or availability. Some of these redun-

dant subsystems may be part of the initial system

configuration, while others serve as alternatives for

system reconfiguration (e.g., a quad subsystem that

reconfigures into a triad).

A system hierarchy is described by nondirectional

tree graphs. Root nodes (identified by a circle)
represent the system or one of its subsystems. Other

nodes (identified by a rectangle) represent one or
more identical subsystems or components.

Unless they are assigned specific components,
subsystems are assigned components with the lowest

numbers available. For example, if there were six

processors, numbered 1 through 6, and two processor

triads, one triad would be assigned processors 1

through 3 and the other triad would be assigned

processors 4 through 6.

2.1.2.1. Physical. Physical subsystems cannot be

reconfigured. However, the failure of a physical sub-

system does not preclude the system from operating,

as long as the system requirements are met.

(

Figure 2.8. Physical hierarchy of the multiprocessor.

Figure 2.9. Physical hierarchy of tile printed circuit board
subsystem type.

- Figures 2.8 and 2.9 describe the physical hierar-

chy of the multiprocessor (MP). Initially, the multi-

processor contains six printed circuit boards (PCB's),

which belong to the same physical subsystem type.
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Figure 2.10. Logical hierarchy of the multiprocessor.

Each board contains a processor, memory, and a

watchdog timer.

2.1.2.2. Logical. Logical subsystems can be re-

configured. Before component failures cause them to

fail, they can recover by replacing the failed compo-
nents with spares. If not enough spares are avail-

able, the system can degrade to a lesser number of

subsystems or a less redundant subsystem. When

a logical subsystem fails, the system also fails un-
less it can be reinitialized by a separate subsystem

or component.

Figures 2.10 and 2.11 describe the logical hierar=

chy of the multiprocessor. Initially, the multiproces-
sor contains two processor triads, one memory triad,

one watchdog triad, one transmit bus triad, one re-

ceive bus triad, and one watchdog bus triad. These

triads are each composed of three components of the

same type.

@

Figure 2.11. Logical hierarchy of the triad (T) subsystem
class.

The ARM program will automatically determine

what components are spares by comparing the ex-
ternal structure with the logical hierarchy; any extra

instances of components in the external structure,

beyond what is included in the logical hierarchy, will
be assumed to be spares. Therefore, from figures 2.6

and 2.10, the spare components are assumed to be

three memories, three watchdog timers, one transmit

bus, one receive bus, and one watchdog bus.

2.1.3. System Reconfiguration

The future system Configurations are described in

terms of the reconfigurations allowed. A change in

the system's configuration in response to some trig-

gering event is defined as a reconfiguration. A re-

configuration occurs when the system is reinitialized
because of a logical subsystem failure or when the

system degrades to a lesser number of subsystems

or a less redundant subsystem because no spares ex-

ist to replace a failed component. Also, the mission

phase may change, thus causing the system to recon-

figure. If the system is to be reinitialized because

of a logical subsystem failure, only one reconfigura-
tion must do so. To simplify the model specification,

a single reconfiguration will only be ail0wed to de-

grade a subsystem to, at most, two less c0mp0nents.
For example, one reconfiguration could take a sub-

system from a quintuple to a triad, and a subsequent

reconfiguration could take it to a simplex.

A reconfiguration is described in part by one or

more unidirectional graphs. A source node repre-
sents one or more of the components or subsystems

(physical or logical) which must be active before the

reconfiguration. A destination node represents either
the reinitialized system or one or more of the logical

subsystems that will be active after the reconfigura-

tion in place of the logical subsystems identified by its

source node. Each edge is labeled with the name of

a specification that will provide the triggering event
and the rest of the reconfiguration parameters, de-

scribed in subsection 2.2.5, which will complete the
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descriptionof thereconfiguration.Thespecifcation
namecancontainletters,underscores,anddigitsin
anyorder.

Figure2.12describesthe reinitializationof the
multiprocessorby the watchdogtriad. Figure2.13
describesthedegradationof themultiprocessorfrom
two processortriads (PT's) to one. If the recov-
ery rate of the remainingtriad is specifiedasbe-
ing greaterthan 0, the workingprocessorsin the
deactivatedtriadareassumedto becomespares.

Restart I_

Figure 2.12. Reinitialization of the multiprocessor.

2 to 1PT
:.@

Figure 2.13. Degradation of the multiprocessor.

Currently, only the reconfigurations that degrade

the system have been implemented. Therefore, at
the present time, reconfiguration graphs are needed

only for systems that have logical subsystems and

can degrade to a lesser number of logical subsystems

and/or to less redundant logical subsystems.

2.1.4. Requirement

The requirement of a system or subsystem is de-
fined as the minimum set of subsystems and com-

ponents needed. Performance levels can be used

to identify the nondegraded mode and the various

degraded modes of operation a system might have.

This requirement is described by one or more suc-

cess trees. Root nodes (identified by a circle) repre-

sent the system, one of its subsystems, or a perfor-
mance level. Other nodes (identified by a rectangle)

represent one or more identical subsystems, a per-

formance level, or one or more identical components.
It is assumed that components in the system success

tree are not in any logical subsystem. A success tree

is required for all systems, subsystems, and perfor-
mance levels.

Success trees and fault trees use the same nota-

tion, but they define the combination of events that

will cause the system to succeed or fail, respectively.
The advantages of success trees over fault trees are

that (1) they are more intuitive for a computer engi-
neer who is concerned with making the system work

and not with how it can fail and that (2) a conserva-

tive reliability estimate is produced if some modes of

operation are left out of the success tree, because sys-
tem failure is assumed for those modes of operation,

whereas an optimistic reliability estimate is produced
if a failure mode is left out of a fault tree.

The graphs in figures 2.14 to 2.16 describe the

system and subsystem requirements of the multi-

processor. This multiprocessor can operate at one of

two performance levels. To achieve full performance

(FP), both processor triads, the watchdog triad,
and the memory triad must be operational. The

requirements for degraded performance (DP) are the

same except that only one processor triad is needed.

Each printed circuit board requires that its memory
be working for it to be operational. Subsystems of

the triad class require two of their three components

to operate.

2.2. Parameters

The following subsections describe the parameter

specification windows. Any time unit may be used

for the parameter values as long as it is the same
one for all of them. The time unit used for ARM

parameters throughout this paper is hours. The
OK and CANCEL buttons in each window save and

discard the parameter changes made, respectively.

Selecting either button makes the window disappear.

The ARM program will assume that a transition

which reconfigures components and/or subsystems in

or out of the system describes sequential processes.

For example, if n faults exist in one or more sub-
systems of the same type with recovery rate p, the

rate at which one of the faulty components is replaced

by a spare is assumed to be p not np. If this assump-
tion is not true, the result will be conservative. Typ-

ically, these transitions are fast, in which case this
assumption being false would have little effect.

The SURE program requires slow transitions to
follow an exponential distribution, but it allows fast

transitions to follow a general distribution. Because

transitions that reconfigure components and/or sub-

systems in or out of the system are typically fast,
ARM allows them to follow a general distribu-

tion. However, in SURE, the transition probability

must be given for each general transition competing

with other fast transitions (Butler and White 1988).

These probabilities must be given for each combi-

nation of one or more general transitions competing

15



Figure2.14.Requirementsofthemultiprocessor,

I
Figure 2i151 Requirement of the printed circuit board sub-

system type.
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with otherfasttransitions.Thenumberof combina-
tionsof n competing general transitions taken two or
more at a time is as follows:

n n!

Z._ jT (n - j)!
j=2

To simplify the system description and the model

specification, ARM requests only one probability

for each general transition. This is the occurrence

probability when it is competing with any of the
fast exponential rates at which transient faults dis-

appear or intermittent faults become benign (sub-
section 2.2.1). Although these rates are fast, ARM

does not allow them to follow a general distribution

so that only one transition probability is needed for

each general transition. This transition probability

will be assumed to be the same for all competing
fast exponential transitions. This assumption is not

strictly true; however, it is often close enough in

practice to be used to simplify the analysis.

Because ARM only asks for the probability of a

general transition for the case when it is competing
with the fast exponential rates at which transients

disappear or intermittent faults become benign, these
general transitions cannot compete with potentially

general transitions. A potentially general transition

is one that ARM allows to follow a general distribu-
tion. The only transitions that ARM allows to follow

a general distribution are those that reconfigure com-
ponents and/or subsystems in or out of the system.

However, all fast exponential transitions can com-

pete. To determine which potentially general transi-
tions should take precedence over others and which

ones have the same precedence and therefore should

compete, ARM requires that the user assign a posi-

tive integer priority to each potentially general tran-

sition. A value of 1 will be interpreted as the highest
priority. Transitions that are assigned the same pri-

ority can compete if they follow exponential distri-

butions, their triggering conditions are met, and the

triggering conditions of higher priority transitions are
not met.

Initially, numeric and selection parameters are

assigned an appropriate default value. Probabilities

default to 1 or 0. Priorities and coverage probabilities

default to 1. Rates, means, standard deviations, and
transition probabilities default to 0.

For each component, one of the failure rates de-
scribed in subsection 2.2.1 must not be 0. Other-

wise, ARM will notify the user and not specify the

model. All other parameters may be left at their

default values. Therefore, ARM does not prompt the

user for any values.

Instead of values, all numeric parameters except

priorities can also be given variable identifiers that
start with a letter and can contain letters, under-

scores (_), and numbers. One of these variables can

be given a range as described in subsection 2.2.7 if
it is not used for the ASSIST trim rate described

in subsection 1.2. If a variable is used for the trim

rate, ASSIST will prompt for its value. The SURE,

PAWS, or STEM programs will prompt for the value

of all other variables without a range.

Numeric parameters are assumed to be indepen-
dent of the system state. This assumption is not

strictly true; however, it is often close enough in

practice to be used to simplify the analysis.

2.2.1. Active Component

The active component parameters with example

values are shown in figure 2.17. First is the name

of the component type. Second is the arrival rate
of permanent faults (0.00005 per hour or 2 × 104

hours between permanent failures). The next two

are the arrival (0.0005 per hour) and disappearance

rates (4000 per hour or 0.9 seconds to removal) of
transient faults. If the arrival rate of transient faults

is not 0, then the disappearance rate must have a
value other than 0. The next three are the rates

at which intermittent faults arrive, become benign,

and become active again. If the arrival rate of

intermittent faults is not 0, then the benign and
active rates must have values other than 0. All six

rates are assumed to describe concurrent processes.

For example, if there are n working components of

the same type with a permanent failure rate of )%

the rate at which one of them fails permanently is
assumed to be nA. If this assumption is not true, the
result will be conservative.

The disappearance and benign rates are assumed

to describe fast transitions if they are not 0. This
is not a severe restriction because the behavior of

a transient fault with a slow disappearance rate ap-
proximates that of a permanent fault and so does the

behavior of an intermittent fault with a slow benign
rate. These are the only fast exponential transitions

that may compete with general transitions.

2.2.2. Spare Component

The spare component parameters with example
values are shown in figure 2.18. First is the name

of the component type. Second is the failure rate

factor used to indicate which type of spare this is. It
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Active Coepo_ent Parameters

Compeme_t Type:

Pernememt Failure Rate:

Tremsie_t:

Failure Rate: _e-4

Disappearance Rate :

lntermittemt :

Failure Rate:

Beni_ Rate:

Active Bate :

e-5

_e-6 I

I

I

J

I

Figure 2.17. Active component parameters with example

values.

spare

Cemponemt Type:

Failure Rates FaCtor: _.0 I

Betectable Fractiom: _0.9 J

Recovery PrioriW: _1 ]

Recovery Ti_t Distrilmtiem:

Expemealtial 0 0emeral

P_ge:

Stm_Jard De_atiom: _0.0 [

Probability: _.0 I

Figure 2.18. Spare component parameters with example Values.

CoBp_ment Type: l_

Repair Coverage: [0 . 999999999

Repair Priority: _I J

Repair Ti_e Distri/mtiom :

• Expomntial

Rate: [30.0 [

General

Stm_dard Ueviatim_ :

Probability: _0.0

_o.o ]

Figure 2.19. Component repair parameters with example values.
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is 0 for cold,in theexclusiverangeof 0 through 1

for warm, and 1 for hot. This factor, which is

the spare's fraction of the active component's failure

rates, defaults to 1. Third is the fraction of faults
that can be detected in a component of this type

while it is a spare. This fraction defaults to 0.

Fourth is the fault coverage of a spare component

of this type. Fifth is the recovery priority. Sixth is

the parameter that indicates whether the recovery

time of detectable faults follows an exponential or

general distribution. The next three parameters for

the recovery time are (1) the rate, (2) the conditional

mean (#), and (3) the conditional standard deviation

(a). Parameter 1 is for an exponential distribution,
and parameters 2 and 3 are for a general distribution

given that the transition takes place.

The last parameter is the probability (P) that

this transition will take place if it is competing with

fast exponential transitions (whose rates add up to

)_). This parameter defaults to 0. If the specification

of the competing transitions is not consistent, SURE
will not evaluate the model. To be consistent, these

transitions must meet the following condition:

2
P<

- 2(1 + A2 +.2)

This expression was derived from the conditions

given in Butler and White (1988).

2.2.3. Component Repair

The component repair parameters with example

values are shown in figure 2.19. First is the name of

the component type. Second is the probability that

the system can survive the reintegration of this type
of component once it has been repaired. Third is

the repair and reintegration priority. The remaining

parameters specify the repair and reintegration time
distribution.

2.2.4. Subsystem Recovery

The subsystem recovery parameters with example

values are shown in figure 2.20. First is the name of

the subsystem type. Second is the fault coverage for
components in this type of subsystem. Third is the

recovery priority. The remaining parameters specify

the recovery time distribution.

Figure 2.21 illustrates the meaning of the param-

eters of active components and subsystem recoveries

using a partial Markov model of a processor dual with

m cold spares and repair. Except for states 0 and 6,
all the states have additional transitions to additional

states, none of which are shown. If the spares were

warm or hot, state 0 would also have transitions rep-

resenting the failure of the spares. Permanent, tran-

sient, or intermittent failures can take the system into

states where a faulty component actively produces er-
rors. From these states, either the system will detect

these errors and succeed or fail in reconfiguring out

the faulty component, the fault will disappear if it is

a transient, or the fault will become benign if it is

intermittent. If the faulty component is reconfigured

out, it can be repaired and the system can succeed

or fail in bringing it back into the configuration. The

following notation applies to figure 2.21:

Parameter Description

F fault coverage

R repair coverage

a intermittent active rate

intermittent benign rate

transient disappearance rate

), permanent failure rate

tt repair rate

p recovery rate

T transient failure rate

w intermittent failure rate

State Description

0 no faults; m spares

1 1 permanent fault; m spares

2 1 transient fault; m spares

3 1 active intermittent fault; m spares

4 1 benign intermittent fault;

m spares

5 no faults; m- 1 spares

6 system failed

2.2.5. System Reconfiguration

The system reconfiguration parameters with ex-

ample values are shown in figure 2.22. First is the

specification name. The second parameter indicates
whether this reconfiguration is triggered by a logical

subsystem failure (default), a mission phase change,
or a component in a logical subsystem failing without

a spare. Third is the name of the component type
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recovery

Subsl_t_ Type : _(p)

,mxlt Coverage: _.999999999 I

Recovery Priority: _1 ]

Recovery Tine Distrilmtiom:

Expa_mnti_l _ Oeneral

Rate: _.8e3 I Neon: _.0

Standard Oeviatio_:

Figure 2.20. Subsystem recovery parameters with example values.

reorder

2T

Q
4

Figure 2.21=. Partial Markov model of a processor dual with

m cold spares and repair.

Specification Name: __to_lPT

Triggering _t:

0 L°gical S_bsI_tem Failure

0 _issim Phase Change

• Component Failing vitl_ut a Spare

Cmq_mmt Type: _

Beconfi_ration Coverage:

Recemfiq_ration Priority: _1

Recmfiguration Time Distribution:

Eqxme_tial _ GeMral

Rate: _.8e3 J

J

I-a-I

-.:_o ]
,,:,_d_.io,, [o.o I

Prob+ilitT: _.0 l

Figure 2.22. System reconfiguration parameters with example

va|ues.

2O



ASSIST Prime Ccnditim_: I"

Tr_ing ]qethod:

Combined vitb es_ Prying

_) Separate froD an F Pruning

0 off

Tri_ Rate Selecticm:

Aut m_atic O P_aw_al

Tr_ sate: _o.o I

Figure 2.23. Model generation parameters with default values.

Model Evaluatic_ Parameters

Hissi(m T_e: I10.0 I

Prime Level Selecticm:

Automatic _ Rmaual

revel: [0.0

toop Tromcatim_ Level:

Digits of Accuracy Required:

Variable Name:

B_ge:

I. I

I

Figure 2.24. Model evaluation parameters with default values.

whose failure without a spare will trigger the recon-

figuration. Fourth is the probability the system can

survive the triggering event and successfully reconfig-

ure. Fifth is the priority of the mission phase change,

if any, and the consequent reconfiguration. This pri-

ority can be used to order multiple phase changes

into a sequence. Because mission phase changes can

occur at any moment, in most cases they should be

given a priority equal to or less than other transi-

tions; otherwise, lower priority transitions will have

to wait for the higher priority phase changes to oc-

cur. If the reconfiguration is reinitializing the system

because of a logical subsystem failure, it must have

a priority of 1, and it must be the only transition to
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have that priority. The remaining parameters specify

the combined time distribution of the reconfiguration

and the mission phase change, if any.

2.2. 6. Model Generation

The window with default values shown in fig-

ure 2.23 allows a user familiar with the ASSIST pro-

gram, which is described in subsection 1.2, to select

which, if any, state space reduction techniques are to

be used in generating the model and to specify any

associated parameters. The first parameter is the op-
tional ASSIST prune condition, which is specified as

a Boolean expression of the total number of compo-

nent failures (TNF) and/or the number of failures

for a type of component (e.g., NF(p)). For example,
the following expression would prune the model when

there were two processor failures or three component

failures of any type:

NF(p) >= 2 or TNF >= 3

The second parameter indicates the optional trim-

ming method to be used. The last two parameters in-
dicate whether the trim rate should be selected auto-

matically or manually and the trim rate to be used

when it is selected manually. If the trim rate is to be

selected automatically, variables cannot be used for
the arrival rates of faults.

2. 2. 7. Model Evaluation

The window with default values shown in fig-

ure 2.24 allows a user familiar with the SURE,

PAWS, or STEM programs, which are described in

subsection 1.2, to specify parameters used in the eval-
uation of the model. The first parameter is the mis-

sion time used for calculating the failure probability.

The next two parameters indicate whether the

SURE prune level should be selected automatically

or manually and the prune level to be used when it

is s_lected manually. The ASSIST pruning affects
which states are generated, whereas the SURE prun-

ing affects which of the generated states are evalu-

ated. If no SURE pruning is desired, the SURE prune
level selection should be manual, and the prune level
should be left at its default value of 0.

The fourth parameter is the maximum number

of times the SURE program will go around a loop

in the model before truncating its traversal. The

fifth parameter is the number of digits of accuracy

required. The _SURE program will issue a warning

if SURE pruning and truncation result in an upper
bound on the failure probability that does not meet

this accuracy requirement.
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The last two parameters are used when the failure

probability is to be calculated as a function of a
previously defined variable. In that case, the name

of the variable must be given along with its range.

The range can be specified as follows:

I to h add i

where I and h are the low and high ends of the range

and i is the increment added to vary the variable's

value over that range. The range can also be specified
as follows:

l to h by f

where f is the multiplication factor used to vary the

variable's value over the range.

2.3. Summary and Recommendations

Although the graphs and parameters described
in the previous two subsections can be given in any

order, the number of errors in the system description

maybe reduced by following the same order of steps
each time. The order suggested by the GUI pull-
down menus is recommended because it should be

easy to remember since the user sees it every time the

pull-down menus are used and it has been designed

to be natural and intuitive. The order and steps

recommended for describing a system are as follows:

1. Identify all the system components and their
interconnections in the external structure

graph.

2. If the neighbors of a component use it to
communicate, indicate so by ascribing to the

component either the fully connected inter-

nal structure typical of buses by following its

identifier in the external structure graph with

an asterisk (*) or a specific internal structure
graph.

3. If a subset of the system components, but

not all of them, depends on one or more

components in the subset, define the subset

as a subsystem by giving its hierarchy and

requirement graphs. If the subsystem defined
for the subset is part of the initial system

configuration, include it in the appropriate

system hierarchy graph or else it is part of

a future system configuration and must be

included in a system reconfiguration graph as
a destination node.

4. If physical and/or logical subsystems ex-

ist, give the system physical and/or logical

hierarchy graphs.



5. If the systemcandegradeto a lessernum-
ber of logicalsubsystemsand/or to lessre-
dundant logical subsystems,give the sys-
temreconfigurationgraphsthat describethese
degradations.

6. Givethe successtreeof the systemandeach
subsystemandperformancelevel.

7. Usetheactivecomponentparameterswindow
to assignat leastonenonzerofailurerateto
eachcomponenttype.

8. If any of the systemcomponentsat some
point becomepotentialspares(components
that arenot partof a logicalsubsystem)and
the defaultvaluesdo not apply to someof
them, usethe sparecomponentparameters
windowto assigntheapplicablevalues.

9. If someof the systemcomponenttypescan
be repaired,usethe componentrepairpara-
meterswindowto definetheprocess.

10.Usethe subsystemrecoveryparameterswin-
dowto definetheprocessif therearelogical
subsystemsandtheir faulty componentscan
bereplacedbyspares.

11. If any systemreconfigurationgraphshave
beengiven,use the systemreconfiguration
parameterswindowto specifyeachreconfig-
uration.

12.Usethemodelgenerationparameterswindow
to providetheapplicablevaluesif thedefault
valuesdonot apply.

13. If the defaultvaluesdo not apply,usethe
model evaluationparameterswindow to
providetheapplicablevalues.

3. Automated Reliability Modeling
(ARM) Implementation

Theuseof fixed-sizearraysin theARM program
is limitedto the storageof valuesor variableiden-
tifiersfor parameterswhoselengthsaredetermined
bytheGUIimplementation.(Theselengthscouldbe
easilychangedin later versionsof ARM.) All other
dataarestoredin dynamicallyallocatedstructures
or arrays;therefore,the sizeof the problemswhich
ARMcanhandleis limitedonlybythecomputeron
whichit is running.Dynamicallocationalsopermits
ARM to moreefficientlyusestorageby allocating
onlywhat isneededbythecurrentproblem.

TheARM programhasbeenimplementedusing
a C programwith morethan 8000sourcelinesof
whichmorethan1000wereautomaticallygenerated,

asdescribedin subsection3.1.2.Thefollowingsub-
sectionsidentifythe problemsinvolvedin doingso
anddescribethestepstakento solvethem.

3.1. Graphical User Interface

The GUI, which is based on a hierarchy of win-

dows, has two types of windows. The implementa-

tion of the graphical editing windows is described in
subsection 3.1.1. The implementation of the win-

dows used to specify parameters and select actions is
described in subsection 3.1.2.

3.1.1. Graphical Editing Windows

Graphical editing has been implemented using

the schematic drawing editor Schem (Vlissides 1990).

This editor provides three windows with which to

create, view, and edit graphs.

The editor window, shown in figure 3.1, provides

arrows for selecting what part of the graph is being
viewed and at what scale. This window also provides

five pull-down menus. The File menu can be used for
reading and saving files; creating, adding, or remov-

ing tools for the creation of graphical components

called elements; and creating a textual representation

of a graph that identifies its elements and their inter-
connections called a netlist. The Edit menu can be

used to copy, paste, or delete graphical components

and to assign the graph a name that identifies it in

the netlist (by using the command Info). The Struc-

ture menu can be used to group components and then
copy or move them as a single entity. The Align menu

can be used to center graphical components or align
them in relation to one another. The View menu can

be used to display the drawing tools window and to
center the whole graph. The two other windows are

displayed automatically when Schem is executed.

The tools window, shown in figure 3.2, provides

commands for selecting and moving graphical com-

ponents, connecting the nodes of graphical elements,
and assigning to the elements and their nodes the

names that identify them in the netlist. This window

also displays the tools currently available for creating

graphical elements. The node, wire, bulb, and switch

tools (the top four shown in the window) are the only
ones provided by Schem. All other elements have to

be created by the Schem user. Figure 3.2 shows 7 of
the 28 tools created for the ARM user.

The drawing tools window, shown in figure 3.3,

provides five pull-down menus, eight drawing tools,

and four commands. The pull-down menus can be
used to select the current font, brush, pattern, and

foreground and background colors. The drawing
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Figure 3.3. Drawing tools window.
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Figure 3.2. Tools window.



tools can be used to create a graphical component
that can be text or a line, rectangle, or circle. The

commands can be used to scale, stretch, rotate, or

reshape a graphical component.

The netlist file of each graph must be generated

for ARM to process the graph. These files must be

of the net type. Their file names must be composed

of an identifier, an underscore (_), and a suffix. The
identifier must correspond to the name of the system,

subsystem, component (s), or performance level being
described, except that underscores are substituted

for parentheses and periods. The suffix describes

the class of graph in the file. The suffixes that
must be used for each class of graph are shown in

table 3.1. For example, the file specifications for

the hierarchies of logical subsystem class T(x) and

physical subsystem CR_A.1 are T_x_logical.net and

CR_A_l_physical.net.

Table 3.1. File Name Suffixes for Each Class of Graph

Graph class File name suffix

External structure External

Internal structure Internal

Physical hierarchy Physical

Logical hierarchy Logical

System reconfiguration Reorder

Requirement Require

The names that identify the graph and its ele-
ments in the netlist must be exactly the same as

the name of the system, subsystem, component(s),

or performance level being described. The only ex-
ception to this requirement is that logical gate ele-

ments and the root elements (identified by a circle)

of tree graphs must retain their original netlist names

of and, or, plus root. The names that identify graph

element nodes in the netlist file must be composed
of a function identifier and a tag. The function iden-

tifier has to be input, output, or bidirectional. For

internal structure graphs, the tag is composed of an
underscore followed by the name of the element that
the node is connected to in the external structure

graph. For system reconfiguration graphs, the tag is

composed of an underscore followed by the name of

the specification.

For all other graphs, a tag is needed only if
an element has more than one node with the same

function. If present, this tag must be composed of an

underscore followed by an identifier that is unique
for nodes with the same function and in the same

element. For example, two nodes in the same element

could be named input_l and input_2.

3.1.2. Parameter Specification and Action
Selection Windows

The windows for entering parameters and select-

ing actions have been implemented using the TAE

Plus user interface development tool for building

X window-based applications (Szczur 1990). These

windows were defined using the TAE Plus work-

bench. The workbench generates the more than 1000
source lines that display these windows, including an
event handler for each item in a window. Function

calls have been added to each event handler to check

the validity of the input and to store it if so indicated

by the user. The inputs from each window are stored
in a separate file.

These parameter files are of the par type. Their

file names are composed of an identifier, an under-

score (_), and a suffix. The identifier corresponds
to the name of the system, subsystem type, compo-

nent type, or reconfiguration specification being de-

scribed, except that underscores are substituted for

parentheses and periods. The suffix describes the
class of parameters in the file. The suffixes that

are used for each class of parameters are shown in
table 3.2.

Table 3.2. File Name Suffixes for Each Class of Parameter

Parameter class File name suffix

Active component Active

Spare component Spare

Component repair Repair

Subsystem recovery Recovery

System reconfiguration Reorder

Model generation

Model evaluation

Generate

Evaluate

3.2. Reading and Processing the System

Description

When indicated by the user, ARM uses the cur-

rent system name to read and process the system de-

scription files and check them for completeness and
consistency. If at any point these files are found to be

incomplete or inconsistent, the user is notified, and
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the readingand processingis aborted. The ARM
programtakesthe followingstepsto read,process,
andcheckthesystemdescriptionfiles:

1. Readstheexternalstructure

2. Readsthecomponentparameters
3. Determinestheinternalstructureof the

components
4. Detectssymmetriesin theexternalstructure

5. Readsthesystemphysicalhierarchy
6. Determinesthehierarchyof physical

subsystems
7. Readsthesystemlogicalhierarchy

8. Determinesthehierarchyof logical
subsystemsin theinitial configuration

9. Readsthereconfigurationgraphsand
parameters

10.Determinesthehierarchyof logical
subsystemsnot in the initial configuration

11.Readsthelogicalsubsystemparameters

12.Readstherequirements

13.Readsthemodelingparameters

The programidentifiesthe systemcomponent
typesin the externalstructurein step2 andreads
their active parameterfiles. It also readsthe
spareandrepairparameterfilesif theyarepresent;
otherwise,it usesdefaultvalues.

In step3,theprogramreadstheinternalstructure
filesof eachvertexin theexternalstructureif they
arepresent;otherwise,thedefaultinternalstructure
indicatedin the externalstructureis used. It also
recordsanynumbersassignedto specificcomponents
in theexternalstructure.

The programdivideseachcomponenttypeinto
classesin step 4; theseclassesare equivalentin
termsof their connectionsin theexternalstructure,
asdescribedin subsection3.2.1. Theprogramalso
assignsnumbersto thosecomponentsthat did not
haveanyin theexternalstructure.

In step5,theprogramreadsthesystemphysical
hierarchyfileif it ispresent;if so,it thenidentifiesthe
physicalsubsystems,their types,andtheir classes.

In step6, the programdeterminesthe hierar-
chyof anyphysicalsubsystemsasdescribedin sub-
section3.2.2.It thenassignsspecificcomponentsto
thephysicalsubsystemswherenecessary.Basedon
thecomponentsassigned,theprogramthenidentifies
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the componentequivalenceclassesin eachphysical
subsystem.

In step7, the programreadsthesystemlogical
hierarchyfileif it ispresent;if so,it thenidentifiesthe
logicalsubsystemsin the initial configuration,their
types,andtheirclasses.

Step8is thesameasstep6exceptfor thelogical
subsystemsin theinitial configuration.

In step9, theprogramreadsthesystemreconfig-
urationfile if it is present;if so,it then findsa re-
configurationgraphWhosesourcevertexrepresentsa
previouslyidentifiedcomponentorsubsysSem,stores
the reconfigurationinformation,_an(_identifiesany
newlogicalsubsystemtype and classin the desti-
nationvertex.Thisstepassumesthat thenewsub-
systemtypecancontainanycomponentequivalence
classesin the old subsystemtype. Whenthereare
nomorereconfigurationgraphsto process,it reads
theparameterfilesthat specifythereconfignrations.

In step10,the programreadsthe hierarchyfile
of anylogicalsubsystemclassthat is not in the ini-
tial configuration.It thendeterminesthehierarchy
ofanylogicalsubsystemthat isnot in theinitial con-
figurationfromthehierarchyof its subsystemclass
and the componenttype arguments,if any,of its
subsystemtype.

Theprogram,in step11,readsthe recoverypa-
rameterfilesofthelogicalsubsystemtypesif present;
otherwise,it usesdefaultvalues.

In step12,theprogramreadsthesystemrequire-
mentsfile. If thereareanysubsystemclassesorper-
formancelevelswhoserequirementsarenotdefinedin
the systemsuccesstree,it readstheir requirements
files. Fromthe requirementsof its subsystemclass
andthecomponenttypearguments,if any,Ofitssub-
systemtype, theprogramthendeterminesthecon-
ditionsunderwhicheachsubsystemwill fail andany
componentdependenciesthat exist.

In step13, the programreadsthe modelgen-
eration and evaluationparameterfiles if present;
otherwise,defaultvaluesareused.

3.2.1. Detection of Symmet_71 in the External

Structure Graph

Each component type is divided into equivalence
classes because ARM assumes that when a com-

ponent in a logical subsystem fails, it can only be

replaced by an equivalent component. Substruc-
tures in the external structure graph G are consid-

ered symmetric if they are isomorphic and the cor-

responding vertices of the two graphs have identical

component-type labels. Symmetrical substructures
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Figure 3.4. External structure with symmetry.

are assumed to be identical in function and reliabil-

ity.

Subsection A1 shows the algorithm used by
ARM to detect symmetries in the external struc-

ture graph G. This algorithm has been derived from

the one used in ADVISER (Kini and Siewiorek 1982)
for nondirected graphs with a single component per

vertex because the ADVISER algorithm is mature,

well documented, and simple. However, the ARM
algorithm applies to directed graphs that can have

multiple components per vertex. This algorithm is

based on the component-type labels and the degree

of the vertices in the graph. The degree of a vertex is
the number of neighbor vertices which it has of each

type. Two vertices are neighbors if they are inter-

connected. Neighbors can be of the input, output, or
bidirectional types.

The ARM algorithm requires three steps to parti-

tion the vertex set of a labeled graph into equivalence
classes whose vertices are symmetrical. In the first

step, the partition is based on the component-type la-

bel of each vertex. For the second step, the partition
is based on the degree of each vertex. In the third

step, partitioning is attempted based on the number

of neighbor types each vertex has in each equivalence
class.

The last step must be repeated until there are no

more changes in the equivalence classes. The reason

for this is that each partition changes the number of

neighbors in each equivalence class; therefore, other
partitions may become necessary. In the worst case,

this repetition will stop when each equivalence class
has a single element.

In the first step, the example external structure

in figure 3.4 is divided into five equivalence classes--
one for each component type. Components of the

ne type are split into two equivalence classes--one

of degree 5 and another of degree 6. The first time

the third step is taken, the program splits the pe

and the lop component types into two equivalence

classes_ne connected to the ne equivalence class of

degree 5 and the other connected to the ne equiv-
alence class of degree 6. The second time that the

third step is taken, the eight equivalence classes are
left unchanged.

Each class is related to other classes in a con-

nectivity sense because the vertices in the class are

symmetrically connected to the vertices in other
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Figure 3.5. Equivalence class graph.

classes. These equivalence classes and their con-

nectivity relationships may be viewed as defining
another graph G 1. The vertices of G r correspond

uniquely to the equivalence classes in G. Unlike the

basic directed graph without self-loops, which was
taken to be the model for G, G t may have vertices

that have self-loops. A self-loop occurs when the ver-

tices in the same equivalence class are connected to

each other in some symmetric fashion, thus making

the equivalence class its own neighbor. Also, the
number of links or connection density between two
vertices of G _ can be greater than 1. This would be

the result of a case in which multiple vertices in the
same equivalence class are connected to one or more

vertices in another equivalence class.

Figure 3.5 shows the equivalence Class graph cor-

responding to the external structure in figure 3.4.

Vertex 2ne[1] corresponds to equivalence class 1 of
component type he, which has two elements in that

class. The 2/1 on the edge between vertex 2nil] and

vertex 4s[1] indicates that each element of equiv-

alence class 2n[1] is connected to two elements of

equivalence class 4s[1] and each element of equiv-
alence class 4s[1] is connected to one element of

equivalence class 2n[1].

3. 2.2. Determining the Subsystem Hierarchies

The hierarchies of any logical subsystems in the

initial configuration and of any physical subsystems

are determined using the algorithm in subsection A2.

This algorithm tries to ol_tain the hierarchy of each

subsystem class from the system hierarchy or a sep-

arate file. For those subsystem classes whose hier-
archy it cannot obtain, the algorithm goes through

each subsystem in the class and reads its individual

subsystem hierarchy file that assigns specific Compo-
nents to the subsystem. For those subsystem classes

whose hierarchy it did obtain, this algorithm then

goes through each subsystem in the class and de-

termines its hierarchy based on the hierarchy of its
subsystem class and the component-type arguments,

if any, of its subsystem type.

3.3. Specifying the System Reliability
Model

If the system description files are complete and

consistent, ARM then specifies the system reliability
model in the ASSIST language. A reliability model

specification in the ASSIST language must define the
following:

1. Any constants

2. State space variables

3. Start state

4. Any functions

5. Death conditions

6. Any pruning conditions

7. State transitions
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The followingsubsectionsdescribethe stepsthat
ARM takesto makethesedefinitions.

3.3.1. Constants

The ARM parameters that were given numeric
values will be defined as ASSIST constants. An

ASSIST input statement will be specified if a variable

identifier is given for the trim rate because ASSIST

needs that value to generate the model. The SURE

input statements will be specified for any other ARM
parameters that were given variable identifiers with-

out a range. If one of the variable identifiers was

given a range, a SURE variable definition statement

will be specified for it. Only one input or variable

definition statement will be specified for each vari-
able identifier even if it is used for more than one

ARM parameter.

The ARM parameters will not be placed in
ASSIST constant arrays because if a variable iden-

tifier is given for one of the parameters, then one of

the array elements would be undefined. Although

the undefined array element could be given some
initial value like 0 and then redefined when SURE

evaluates the model, each redefinition would cause a

SURE warning message. Longer model specification

files are a consequence of not using arrays for con-

stants, but longer files are justified to avoid these

warnings and to provide the convenience of using
variable identifiers.

In addition to the ARM parameters, scalar and

array constants used in later definitions have to

be specified. These constants define the system

components and the logical subsystems.

The system component constants and their defi-
nitions are as follows:

NCT: Number of component types

LCTS: Largest componeng-type size

NEC: Number of equivalence classes

LECS: Largest equivalence class size

CT: Component type of each equivalence class

The size of a component type or equivalence class

is the number of components in the type or class.

All of the above are integer scalars except CT, which

is an integer array indexed by the equivalence class
number.

The logical subsystem constants and their defini-
tions are as follows:

NLT: Number of logical subsystem types

LLTS: Largest logical subsystem-type size

NL: Number of logical subsystems

LNEL: Largest number of equivalence classes in

a logical subsystem

LESL: Largest number of equivalent components

in a logical subsystem

LT: Type of each logical subsystem

NEL: Number of equivalence classes in each logi-

cal subsystem

EC: Equivalence class number of a subset of

equivalent components in a logical subsystem

The size of a logical subsystem type is the number of

subsystems in the type. All of the above are integer
scalars except LT, NEL, and EC. The constants LT

and NEL are integer arrays indexed by the logical

subsystem number. The constant EC is an integer

array whose first index is the logical subsystem num-
ber and whose second index is the equivalent subset

number within the subsystem.

All the parameters involved in a potentially gen-

eral transition are defined as constants except the

priority that is used by ARM in specifying these tran-
sitions as described in subsection 3.3.5. The order in

which all of the constants are defined is as follows:

1. Trimming model generation parameters

2. Model evaluation parameters

3. System component constants

4. Active component parameters

5. Spare component parameters

6. Component repair parameters

7. Logical subsystem recovery parameters

8. Logical subsystem constants

9. Reconfiguration parameters

3.3.2. State Space Variables and the Start State

The system components will be divided into those

that belong to a logical subsystem and those that

do not. Although those that do not will be referred

to as spares, because they often are, they are not

necessarily spares. The components of a logical
subsystem will be divided into subsets of components

in the same equivalence class.

The state space variables and their definitions are
as follows:

CF: Coverage failure

LTC: Logical subsystem-type count
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Table3.3. State Space Variable Functions

Function Definition

NB(i,j) -- P[ij] + W[ij] + A[ij] Number of nonbenign failures in subset

WB(ij) -- C[ij] - NB(ij) Number of working or benign components in subset

W(ij) = WB(ij) - B[ij] Number of working components in subset

PL(i) = sum(P[i,*]) Number of permanent failures in logical subsystem

WL(i) = sum(T[i,*]) Number of transient failures in logical subsystem

AL(i) = sum(A[i,*]) Number of active failures in logical subsystem

NBL(i) -- PL(i) + WL(i) + AL(i) Number of nonbenign failures in logical subsystem

TNF = sum(NF) Total number of failure transitions

SS(k) = WS[k] + PS[k] + IS[k] + AS[k] + BS[k] Number of equivalent spares

sns(k) -- PS[k] + WS[k] + AS[k] Number of nonbenign failures in equivalent spares

FCE = sum(T, A, B, TS, AS, BS) Number of fast exponentials competing with any general transitions

LO: Logical subsystem operational

C: Components in a logical subsystem subset

P: Permanent failures in a logical subsystem sub-
set

T: Transient failures in a logical subsystem subset

A: Active intermittent failures in a logical sub-

system subset

B: Benign intermittent failures in a logical sub-

system subset

NF: Number of failure transitions per component

type

NR: Number of components reconfigured out per

equivalence class

WS: Working equivalent spares

PS: Permanent failures in equivalent spares

TS: Transient failures in equivalent spares

AS: Active intermittent failures in equivalent

spares

BS: Benign intermittent failures in equivalent

spares

Except for CF, Which is a Boolean scalar, all others

are integer arrays. The LTC variable is indexed by

the logical subsystem type number, and it indicates
the number of operational logical subsystems for each

type. The LO variable is indexed by the logical

Subsystem number. The: first index of C, P, T, A,

and B is the logical subsystem number, and the
second index is the equivalent subset number within

the subsystem. The NF variable is indexed by the
component type number. The variables NR, WS,

PS, TS, AS, and BS are indexed by the equivalence
class number.

The ARM program assumes that the only log-

ical subsystems that are operational initially are

those present in the system logical hierarchy; it also
assumes a start state where no failures have yet
occurred.

3.3.3. Functions and Final State Conditions

The state space variable functions and their defi-

nitions are given in table 3.3. The ASSIST function
sum adds all the elements in one or more dimensions

of one or more arrays.

If a pruning condition was given, it is imple-

mented using the state variable NF and the function
TNF. For example, the pruning condition

NF(p) >= 2 or TNF >-- 3

can be implemented by the following statement:

pruneif NF[I] >-- 2 or TNF >= 3;

The Boolean expression represented by the sys-

tem requirements success tree is logically negated
and used as a death state condition. For example,

3O
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theMP systemrequirementscanbe implementedby
thefollowingstatement:
deathif not ((LTC[I] >= 2 and LTC[2] >= 1

and LTC[3] >= 1) or (LTC[1] >= 1

and LTC[2] >= I and LTC[3] >= i));

The conditions under which a logical subsystem

fails are used to trigger a restart reconfiguration, if

there is one; otherwise, they are used as death state
conditions. For example, the requirements of the

logical subsystem T(m) can be implemented by the

following statement:

deathif WB(2,1) < 2;

Other death state conditions include situations

in which the components in the system requirements

success tree can no longer communicate. The condi-

tion for being in the death state that corresponds to

a coverage failure is for CF to be true.

3.3.4. Failure Transitions

The ARM program analyzes the system descrip-

tion to specify the failure transitions. For each failure

transition, the following must be specified: the con-
ditions under which the transition could take place,

its destination state, and its transition rate. Fail-

ure transitions are only specified for those fault types
with nonzero rates.

Several options exist for specifying failure tran-

sitions for components that depend on a component
that has a soft fault:

1. The components could be put in the same

state as the component they depend on; how-

ever, they could become benign at their own
rate even before the component they depend
on.

2. They could be declared to have a permanent

fault to avoid the problem described in op-

tion 1. To implement option 2, these com-

ponents would have to be (a) tracked to de-
termine if they were reconfigured out so they

could be declared to be working when the

component they depend on becomes benign

or (b) left failed.

The ARM program implements option 2(b) because

it is conservative and it avoids the inconsistency
problems with option 1 and the implementation dif-

ficulties with option 2(a).

3.3.4.1. Logical subsystem component .failures.

The condition for fault arrival in a logical subsys-
tem is that working components exist. The destina-
tion state is one in which the number of failures in

the subsystem and in the component's type (NF) has

been increased by 1. Also any components that de-

pended on the failed component are marked as failed.

The fault arrival rate is obtained by multiplying the

number of working equivalent components in the sub-

system by their failure rate. For example, the arrival

of a permanent fault in equivalent subset 1 of log-

ical subsystem 2 can be described by the following
statement:

if W(2,1) > 0 tranto NF[CT[EC[2,1]]]++,

P[2,1]++ by W(2,1) * PFR_^CT[EC[2,i]] ;

where PFR stands for the permanent failure rate. A

caret (^) is used to concatenate a string and a value
to form a previously defined identifier.

The condition for the disappearance of a transient

fault exists when there are components with tran-
sient faults. The destination state is one in which the

number of transient failures in the subsystem (T) has

been decreased by i. The transition rate is obtained

by multiplying the number of equivalent components

with transient faults in the subsystem (T) by their
disappearance rate. For example, the disappearance

of a transient fault in equivalent subset 1 of logi-

cal subsystem 2 can be described by the following
statement:

if T[2,1] > 0 tranto T[2,1]--

by fast T[2,1] * TDR__CT[EC[2,1]];

where TDR stands for the transient disappearance

rate.

The condition for an intermittent fault to go from

active to benign is that components with active in-
termittent faults exist. The destination state is one

in which the number of benign components (B) has
been increased by 1, and the number of compo-

nents with active intermittent faults (A) has been de-

creased by 1. The transition rate is obtained by mul-

tiplying the number of equivalent components with
active intermittent faults in the subsystem (A) by

their benign rate. For example, an intermittent fault

that goes from active to benign in equivalent sub-

set 1 of logical subsystem 2 can be described by the
following statement:

if A[2,1] > 0 tranto B[2,1]++, A[2,1]--

by fast A[2,1] * IBK_^CT[EC[2,1]];

where IBR stands for the intermittentbenign rate.

The condition for an intermittentfaultto go from

benign to activeisthat components with benign in-

termittent faultsexist.The destination state isone

in which the number of components with active in-

termittent faults (A) has been increased by 1 and

the number of components with benign intermittent

faults (B) has been decreased by 1. The transition
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rate isobtainedbymultiplyingthenumberof equiv-
alentcomponentswith benignintermittentfaultsin
the subsystem(B) by their activerate. For exam-
ple,anintermittentfaultgoingfrombenignto active
in equivalentsubset1of logicalsubsystem2 canbe
describedby thefollowingstatement:
if B[2,1] > 0 tranto A[2,1]++, B[2,1]--

by B[2,1] * IAR_'CT[EC[2,1]];

where IAR stands for the intermittent active rate.

3.3.,_.2. Spare failures. Spare failure transitions

are specified only for those component types in which
the failure rates factor is nonzero. The condition for

fault arrival is that working spares exist. The desti-
nation state is one in which the number of working

spares (WS) has been decreased by 1, both the num-
ber of failed spares and the number of failed compo-

nents of the spare's type (NF) have been increased

by 1, and any components that depended on the

failed component are marked as failed. The fault
arrival rate is obtained by multiplying the number of

working spares in the equivalence class (WS) by their
failure rate and failure rates factor. For example, the

arrival of a permanent fault in a spare in equivalence

class 1 can be described by the following statement:

if WS[l] > 0

tranto WS[I]--, NF[CT[I]]++, PS[I]++

by WS[l] * PFR_'CT[I] * FIRF_'CT[I];

where FRF stands for the failure rates factor.

The condition for transient disappearance is that

spares with transient faults exist. The destination

state is one in which the number of working spares

(WS) has been increased by 1 and the number of
failed spares has been decreased by 1. The transition

rate is obtained by multiplying the number of spares

with transient faults in the equivalence class (TS) by

their disappearance rate and failure rates factor. For

example, the disappearance of a transient fault in a

spare in equivalence class 1 can be described by the
following statement:

if TS[I] > 0 tranto WS[I]++, TS[I]--

by fast TS[1] * TDR_ACT[1] * FRF_'CT[1];

The condition for an intermittent fault to go from

active to benign exists when there are spares with
active intermittent faults. The destination state is

one in which the number of benign spares (BS) has

been increased by 1, and the number of spares with

active intermittent faults (AS) has been decreased

by 1. The transition rateis o_btained by multiplying
the number of spares with active intermittent faults

in the equivalence class (AS) by their benign: rate

and failure rates factor. For example, an intermit-
tent fault going from active to benign in a spare in
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equivalence class 1 can be described by the following
statement:

" if AS[I] > 0 tranto BS[I]++, AS[l]--

by fast AS[I] * IBR_'CT[I] * FRF_'CT[I];

The condition for an intermittent fault to go

from benign to active is that spares with benign
intermittent faultsexist. The destination state is

one in which AS has been increased by i, and BS

has been decreased by I. The transition rate is

obtained by mult{plying the number of spares with

benign intermittent faultsin t}ieequivalence Class

(BS) by their active rate and failure rates factor.

For example, an intermittent fault going from benign
to active in a spare in equivalence class 1 can be

described by the following statement:

if BS[I] > 0 tranto AS[I]++, BS[I]--

by BS[I] * IAR_'CT[I] * FRF_'CT[I];

3.3.,_.3. Dependents in logical subsystems. If each

component of type A depends on one component of

type B and some components of type A can be in one

or more logical subsystems, then multiple transitions
arespecified for the failure of a component of type B.

One transition is for the case in which the dependent

component is a spare, and the other transitions are
for each of the logical subsystems containing a com-

ponent of type A. Therefore, if the dependent compo-

nent can be in n logical subsystems, n + 1 transitions

are generated. If there are two dependent compo-
nents that can be in n and m logical subsystems,

then (n + 1)(m + 1) transitions are generated and so
on.

In addition to the conditions mentioned in sub-

sections 3.3.4.1 and 3.3.4.2, these multiple transitions
are conditi0ned on the dependent components being

operational as a spare or in a logical subsystem, as

the case may be. The fault arrival rates mentioned

in subsections 3.3.4.1 and 3.3.4.2 are multiplied by

the probability of each dependent component being
in a particular logical subsystem or being a spare.

For example, if a component in subset 1 of logical

subsystem 2 depends on a con%ponent in equivalence

class 3, the arrival of a permanent fault in a spare in
equivalence class 3 can be described by the following
statement:

if WS[3] > 0 & W(2,1) > 0 tranto WS[3]--,

PS [3]++, NF [CT [3]]++, P [2, I]++

by WS[3] * PFR_'CT[3] * FRF-^CT[3]
• W(2,1) / (WS[EC[2,1]] + W(2,1));

3.3.5. Potentially General Transitions

The ARM program analyzes the system descrip-

tion to derive the potentially general transitions.



Thesetransitionsareonly derivedfor thosefault
typeswith a nonzerofailurerate. Theymustalso
havea nonzerotransitionrate,if theyareexponen-
tial,ormean,if theyaregeneral.Foreachpotentially
generaltransition,the followingmust be derived:
theconditionsunderwhichthetransitionwouldtake
place,its destinationstate, and its transition rate

expression.

Each condition can lead to two types of transi-

tions which include a successful transition, if the cov-

erage is not 0, and a system failure transition, if the

coverage is not 1. The destination state for such sys-
tem failure transitions is a death state in which CF

is true. The transition rate expression of a system
failure transition is the same as that for a successful

transition except that the coverage c is replaced by

(1 - c). Therefore, only the destination states and
transition rate expressions of successful transitions

are given in the subsections that follow.

The rate expression of a general transition is com-

posed of the mean time, standard deviation, and

probability. Except for spare recoveries, the tran-
sition time mean and standard deviation are the

repair, recovery, or reconfiguration mean and stan-

dard deviation. The transition probabilities given in
the subsections that follow are for the case in which

there are no competing fast exponential transitions.
These probabilities are multiplied by the repair, re-

covery, or reconfiguration probability when there is

such competition.

After all the potentially general transitions have

been derived, they are specified based on their pri-

ority using the algorithm in subsection A3. This al-
gorithm only allows competition between transitions

with the same priorities.

3.3.5.1. Spare recoveries. Spare recovery tran-
sitions are derived only for those component types
whose failure rates factor and detectable fraction are

nonzero. The transition condition is that a spare has
failed. The destination state is one in which the num-

ber of components reconfigured out (NR) has been

increased by 1 and the number of failed spares has

been decreased by 1.

The exponential transition rate expression is the
product of multiplying the recovery rate, the cover-

age, the detectable fraction, and the probability that

the system recovers from this fault type and not some

other fault types that it may have in spares of this

component type. The general transition probability

is the product of multiplying the coverage by the pre-
vious probability. The general transition time mean

and standard deviation axe the quotients of dividing

the detectable fraction into the recovery mean and

standard deviation. For example, the recovery from

a permanent fault in a spare in equivalence class 2

and of type 1, which has two equivalence classes, can

be described by the following statement:

if PS[2] > 0 tranto NR[2]++, PS[2]--
by DF_I * SRR_I * SRC_I * PS[2]
/ (NBS(1) + NBS(2));

where SRR, SRC, and DF stand for the spare re-

covery rate,the spare recovery coverage, and the de-

tectable fraction,respectively.

3.3.5.2. Component repairs. The transition con-

dition for a component repair is that NR is nonzero.
The destination state is one in which the number

of working spares (WS) in the equivalence class has

been increased by 1 and NR has been decreased by 1.
An alternative to this destination state is to restore a

subsystem that was retired or whose redundancy had

been diminished instead of increasing the number

of working spares. Because this alternative requires

tracking all subsystem retirements and degradations
to decide which one to reverse, it has not yet been

implemented.

The exponential transition rate expression is the

product of multiplying the repair rate, the coverage,

and the probability that a component from this
equivalence class is repaired and not some other

component of this type. The general transition

probability is the product of multiplying the coverage

by the previous probability. For example, the repair

of a component in equivalence class 2 and of type 1,
which has two equivalence classes, can be described

by the following statement:

if NR[2] > 0 tranto WS[2]++, NR[2]-- by
CP__I * CRC_I * NR[2] / (NR[I] + NR[2]);

where CRR and CRC stand forthe component repair

rate and coverage.

3.3.5.3. Logical subsystem recoveries. The tran-
sition conditions for a logical subsystem recovery are

that the subsystem is operational, one of its compo-

nents has failed, and there is an equivalent spare to

replace it. If the spare is working properly, the des-
tination state is one in which NR has been increased

by 1 and both the number of failed components in

that subsystem and the number of spares have been

decreased by 1. If the spare is not working properly,
the destination state is one in which NR has been

increased by 1 and the number of spares has been

decreased by 1.

The exponential transition rate expression is the

product of multiplying the recovery rate, the cover-

age, and two probabilities. One probability is that of
the system recovering from this fault and not some

other faults that it may have in subsystems of this
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type.Theotherprobabilityis that ofgettingaspare
in theworkingstatethat is indicatedin thedestina-
tionstate. Thegeneraltransitionprobabilityis the
productof multiplyingthecoverageby theprevious
twoprobabilities.Forexample,therecoveryfroma
permanentfault inequivalentsubset1of logicalsub-
system2 of type3, whichhastwosubsystems,can
bedescribedbythe followingstatement:
if L012] & P[2,1] > 0 & WS[EC[2,1]] > 0

tranto NR[EC[2,1]]++, P[2,1]--,

WS[EC[2,1]]-- by LRR_3 * LRC_3 * PL(2)
/ (NBL(2) + NBL(4)) * WS[EC[2,1]]

/ NS(EC[2, i]) ;

where LRR and LRC stand for the logicalsubsystem

recovery rate and coverage.

3.3.5.4. Reconfigurations that retire a subsystem.
The transition conditions for a reconfiguration that

retires a subsystem are that the subsystem is oper-

ational, one of its components has failed, there is
no equivalent spare to replace it, and the number

of operational subsystems of this type is the same

as specified in the source vertex of the reconfigura-
tion graph. The destination state is one in which the

subsystem is no longer operational, the number_of
operational subsystems of this type (LTC) has been

decreased by 1, NR has been increased by 1, the num-
ber of failed components in that subsystem is 0, and

the number of spares has been incremented by the

number of components in that subsystem minus 1.

The exponential transition rate expression is the
product of multiplying the reconfiguration rate, the

coverage, and the probability that the system recon-

figures because of this fault and not some other faults

it may have in subsystems of this type. The general

transition probability is the product of multiplying

the coverage by the previous probability. For exam-
ple, the reconfiguration from a permanent fault in

the only equivalent subset of logical subsystem 2, of

a type which has two subsystems, can be described

by the following statement:

if L012] & P[2,1] > 0 & WS[EC[2,1]] = 0

& LTC [LT [2]] = 2 tranto NR [EC [2, I]]++,

WS[EC[2,1]] = WS[EC[2,1]] + W(2,1),

PS[EC[2,1]] = PS[EC[2,1]] + P[2,1] - l,

TS[EC[2,1]] = TS[EC[2,1]] + T[2,1],

AS[EC[2,1]] = AS[EC[2,1]] + A[2,13,

BS[EC[2,1]] _ BS[EC[2,1]] + B[2,1],

LTC[LT[2]]--, L012] = false, P[2,1] = 0,

T[2,1] = 0, A[2,1] = 0, B[2,1] = 0 by
ILrL3 * RC_3 * PL_(2) / (NBL(2) + NBL(4));

where RR and RC stand for the system reconfigura-

tion rate and coverage,
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3.3.5.5. Reconfigurations that degrade a sub-

system. If a subsystem is going to be degraded by m
components and m is greater than 1, two alternative

ways exist to deal with the m - 1 components that

could be working but are not going to be part of the

new subsystem. These components could be recon-

figured out of the system, or they could be declared
to be spares.

The implementation of either alternative must

consider all the possible ways to chose m- 1 compo-

nents out of the n components in the old subsystem

and the probability of each selection. The reason for
these alternatives is that more than one of the n com-

ponents might have a fault. In that case, it makes a
difference which ones are chosen.

The first alternative is always conservative, but

for some systems, it could be overly conservative.

The ARM program implements the second alter-
native in a way that does not lead to optimistic

results. For subsystems that do not recover from

faults by using spares, their recovery rate or mean,
whichever applies, would be 0, and therefore the

m - 1 components would not be used as spares for
theml

The transition conditions for a reconfiguration

that degrades a subsystem by m components are that

the old subsystem is operational one of its compo-
nents has failed, no equivalent spare exists t0 replace

it, and the number of operational subsystems of this

type (LTC) is greater than or equal to the number
specified in the source vertex of the reconfiguration

graph. The destination state is one in which the old

subsystem is no longer operational, NR has been in-

creased by 1, the number of spares has been incre-

mented by m - 1, the number of failed components
in the old subsystem is 0, a new subsystem is opera-

tional with the components of the old subsystem mi-

nus m, and the number of operational subsystems is
decreased for the old subsystem's type and increased

for the new subsystem's type. To simplify the model

specification, ARM currently limits m to 2.

The exponential transition rate expression is the

product of multiplying the reconfiguration rate, the

coverage, and the probability that the system recon-

figures because of this fault and not because of some
other faults that it may have in subsystems of this

type. The general transition probability is the prod-

uct of multiplying the coverage by the previous prob-

ability. For example, the degradation to a subsystem
that has two less components is caused by a per-

manent fault in the only equivalent subset of logical

subsystem 2, of a type which has two subsystems.



This degradationcanbedescribedby the following
statement:

if L012] & P[2,1] > 0 & WS[EC[2,1]] = 0

& LTC[LT[2]] = 2 tranto NR[EC[2,1]]++,

WS [EC [2, i]]++, LTC [LT [2]]--,

L012] = false, C[2,1] _ 0, P[2,1] = 0,

T[2,1] = 0, A[2,1] = 0, B[2,1] = 0,

LTC [LT [3]]++, L0 [3] = true,

C[3,1] = C[2,1] - 2, P[3,1] = P[2,1] - i,

T[3,1] = T[2,1], A[3,1] = A[2,1],

B[3,1] = B[2,1] by RR_5 * RC_5 * PL(2)
/ (NBL(2) + NBL(4));

3.4. Advanced Features Not Yet

Implemented

Two of the more advanced features of the ARM

system description language have not yet been imple-

mented due to the complexities they involve. If their

use is attempted, ARM warns the user that these fea-

tures have not yet been implemented. The following
subsections outline how they might be implemented
in the future.

3.4.1. Reinitializing Reconfigurations

The transition conditions for a reinitializing re-

configuration are that (1) a logical subsystem has

failed; (2) excluding the components whose fail-
ure caused the logical subsystem to fail, there are

still enough components to meet the system require-

ments; and (3) the components and/or subsystems

required for the reinitializing reconfiguration have
not failed. The destination state is one in which the

components whose failure caused the logical subsys-

tem to fail have been reconfigured out of the system.
The destination state is also one in which either those

components reconfigured out would be replaced by

spares, if available, or the failed subsystem would be
retired or degraded.

The exponential transition rate expression is the
product of multiplying the reconfiguration rate by

the coverage. The general transition probability is

the coverage of the reinitializing reconfiguration.

3.4.2. Mission Phase Change Reconfigurations

No transition conditions exist for mission phase

change reconfigurations because they can occur at

any moment. The destination state is determined

by the reconfiguration graph. This graph is one in

which the logical subsystems in the source vertex are

no longer operational and the logical subsystems in

the destination vertex are now operational.

The exponential transition rate expression is

the product of multiplying the reconfiguration rate

by the coverage. The general transition proba-

bility is the coverage of the mission phase change

reconfiguration.

4. Application Examples and Results

The following subsections illustrate the type of

systems that can be described with the GUI and give
evidence that the results ARM generates are correct.

This is done by comparing the results ARM generates
for four systems with manually generated results. To

make this comparison possible, each pair of results

is based on the same architecture, requirements, and

parameters. For all the system reconfigurations in

the examples of this section, the triggering event used
was a component that failed without a spare. All of

the models were evaluated by SURE using a mission

time of 10, a loop truncation level of 25, and a re-

quirement of 2 digits of accuracy. The manually and

ARM-generated Markov reliability model specifica-
tions for these four systems are presented in Liceaga

(1992).

4.1. Comparison With Example

Multiprocessor Results

The first system is the multiprocessor used as

an example throughout section 2 but without repair.

The architecture and requirements of this system re-

main the same except that no reinitializing reconfig-
uration is used because that feature of ARM is not

yet implemented.

However, some of the parameters used are not the
same. Only permanent failure rates were used, and

they are shown in table 4.1. A value of 0.999999999

was used for all fault coverage probabilities, and a
value of 1 was used for all priorities. A failure rates

factor of 1 was used for all the spare components.
The other parameters used for the spare components
are shown in table 4.2. A rate of 7.8 × l03 was used

for all the subsystem recoveries. The values used for

the reconfiguration from two processor triads to one

were shown in figure 2.22. To generate the model,

an ASSIST pruning condition of TNF >= 5 was used
without any trimming. To evaluate the model, a
SURE prune level of 1 x 10 -is was used.

Statistics comparing the manually and ARM-
generated Markov reliability model specifications are
shown in table 4.3. All of the ASSIST and SURE

execution times in table 4.3 and throughout this pa-
per were measured on a Sun Microsystems SPARC-

station 2 computer. The probability-of-failure results

are compared in table 4.4.
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Table 4.1. All Permanent Failure Rates of the Multiprocessor

Parameter

Permanent failure rate, hr -l

Component type

p wb

5 × 10 -5

m w tb rb

5× 10 -5 2× 10 -6 3x 10 -6 3× 10 -6 3 x 10 -6

Table 4.2. Some Spare Component Parameters of the Multiprocessor

Parameter p

Detectable fraction 0.9

Recovery rate, hr -l 3.3 x 103

Component type

m w tb rb wb

0 0.9 0 0 0

0 1.8 x 10 4 0 0 0

Table 4.3. Reliability Model Statistics for the Multiprocessor

Statistic Manual ARM

ASSIST file lines 195 631

Model generation time, hr 0.36 2.72

States 33 611 46 338

Transitions 694 980 1 092 898

Model evaluation time, hr 1.76 3.18

Table 4.4. Probability-of-Failure Results for the Multiprocessor

Measure Manual ARM Difference Percentage

Lower bound 2.01939 x 10 -l° 2.01835 x 10 -1° 1.04 x 10 -:3 5.15 x 10 -2

Upper bound 2.05305 x 10 -:° 2.05307 x 10 -1° -2 x 10 -15 -9.74 x 10 -4

4.2. Application to Systems Described in
the Literature

The following subsections illustrate the applica-

bility of the GUI to systems that have been described

in the technical literature and give evidence that the

results ARM generates are correct.

4. 2. I. Software Implemented Fault- Tolerance

(SIFT) Computer

A SIFT computer, described in Goldberg et al.

(1984), can initially be configured as a processor p

sextuple (ST). In addition to a central processing unit

(CPU), each processor contains its own memory, in-

put/output port, and power supply. As processors

fail, SIFT first reconfigures into a quintuple, then a

quad, then a triad, and finally into a nonreconfig-

urable dual.

The logical hierarchy and requirements of the

triad subsystem class were shown in figures 2.11

and 2.16. The remainder of the architecture and re-

quirements of this SIFT computer are described by

figures 4.1 to 4.15. Figures 4.1 to 4.3 describe the ini-

tial configuration. Figures 4,4 to 4.6 describe possi-

ble future cofigurations. Figures 4.7 to 4.10 describe
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Figure 4.1. External structure of a SIFT computer.

Figure 4.2. Logical hierarchy of a SIFT computer. Figure 4.3. Logical hierarchy of the sextuple subsystem class.
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Figure 4.4. Logical hierarchy of the quintuple (QT) subsystem class.

Figure 4.5. Logical hierarchy of the quad (Q) subsystem class.
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Figure 4.6. Logical hierarchy of the nonreconfigurable dual (ND) subsystem claus.
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Figure 4.7. Degradation from a processor sextuple (PST) to a quintuple (PQT).
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Figure 4.8. Degradation from a processor quintuple to a quad (PQ).

PQ to PT (D-_

Figure 4.9. Degradation from a processor quad to a triad (PT).

_1 PT to PND --'_ I_

Figure 4.10. Degradation from a processor triad to a nonreeonfigurable dual (PND).
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Figure 4.11. Requirements of a SIFT computer.

Figure 4.12. Requirements of the sextuple subsystem class.
Figure 4.13. Requirements of the quintuple subsystem class.
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Figure 4.14. Requirements of the quad subsystem class. Figure 4.15. Requirements of the nonreconfigurable dual sub-

system class.

I

E

Vq Vq

Figure 4.16. External structure of a Tandem computer. Figure 4.17. Logical hierarchy of a Tandem computer.
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Table 4.5. Reliability Model Statistics for a SIFT Computer

Statistic Manual ARM

ASSIST file lines 18 330

0.23 1.69Model generation time, sec

States 12 18

Transitions 17 17

Model evaluation time, sec 0.02 0.063

Table 4.6. Probability-of-Failure Results for a SIFT Computer

Measure Manual ARM

7.43383 × 10-1:5

Difference

Lower bound 7.47849 x 10 -15 -4.466 x 10 -17

Upper bound 7.71581 x 10-15 7.76217 x 10 -15 -4.636 x 10 -17 -0.601

Percentage

-0.601

the degradations from six to two processors. Fig-
ures 4.11 and 4.12 describe the requirements of the

initial configuration, and figures 4.13 to 4.15 describe

the requirements of possible future configurations.

A permanemt failurerate of 1 x 10 -4 hr -1 was

used for the processors. A coverage of 1, a priority
of 1, and a rate of 3.6 x 103 were used for all the

system reconfigurations. The model was generated
without any pruning or trimming. Default values

were used for the model evaluation parameters, and

these were shown in figure 2.24.

A Markov reliability model for this SIFT com-

puter was specified on page 48 of Butler and Johnson

(1990). Statistics comparing the manually and
ARM-generated Markov reliability model specifica-
tions are shown in table 4.5. Their probability-of-

failure results are compared in table 4.6.

4.2.2. Comparison With Self-Generated Results

The following subsections give further evidence
that the results ARM generates are correct by com-

paring them with results that were generated man-
ually. A value of 4 x 103 was used for all transient

disappearance rates and intermittent benign rates. A
value of 4 x 10 -2 was used for all intermittent active

rates.

_.2.2.1. Tandem computer. An almost minimal
version of a Tandem computer, described in Katzman

(1977), is composed of one processor p dual, one disk
controller k dual, two disk drive d duals, two fans f,

two power supplies ps, and one interprocessor bus b
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dual. In addition to a CPU, each processor contains

its own memory. When a component in a dual (D)

fails, the subsystem is reconfigured into a simplex (S).

This Tandem computer requires all subsystems,
one fan, and one power supply for it to be opera-
tional. Each dual requires that one of its components

be working for it to be operational.

The architecture and requirements of this Tan-

dem computer are described by figures 4.16 to 4.30.

Figures 4.16 to 4.19 describe the initial and fu-

ture configurations. Figures 4.20 to 4.23 describe
the degradations from dual to simplex subsystems.

Figures 4.24 to 4.30 describe the initial and future

configuration requirements.

To generate the model, an ASSIST pruning con-
dition of TNF >= 4 was used without any trim-

ming. To evaluate the model, a SURE prune level
of 1 x 10 -11 was used. The other parameters used

for this Tandem computer are shown in tables 4.7

to 4.9.

Statistics comparing the manually and ARM-

generated Markov reliability model specifications are
shown in table 4.10. Their probability-of-failure

results are compared in table 4.11.

_.2.2.2. Stratus computer. An almost minimal
version of a Stratus computer, described in Siewiorek

and Swarz (1992), is composed of one computer
module and two disk drive d duals. The components

in this version of a computer module are grouped into

two module regions (MR's). Each MR is composed

of a processor board pb, a memory board mb, a disk



Figure 4.18. Logical hierarchy of the dual subsystem class. Figure 4.19. Logical hierarchy of the simplex subsystem class.

Figure 4.20. Degradation from a processor dual (PD) to a

simplex (PS).

Figure 4.21. Degradation from a disk controller dual (KD) to

a simplex (KS).

Figure 4.22. Degradation from a disk drive dual (DD) to a

simplex (DS).

Figure 4.23. Degradation from a bus dual (BD) to a simplex

(BS).
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Figure 4.24. Requirements of a Tandem computer.

Figure 4.25. Requirements of the PPL performance level.
Figure 4.26. Requirements of the KPI_ performance level.
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Figure 4.27. Requirements of the DPL performance level. Figure 4.28. Requirements of the BPL performance level.

Figure 4.29. Requirements of the dual subsystem class. Figure 4.30. Requirements of the simplex subsystem class.
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Table4.7.SomeActiveComponentParametersofaTandemComputer

Parameter P

Permanentfailurerate,hr-1 5x 10-5

Transientfailurerate, hr -1 5 x 10 -4

5 x 10 -6Intermittent failure rate, hr -1

Component type

k d f

2x10 -5 4×10 -5 lx10 -6

2x 10 -4 4x 10 -4 1 x 10 -5

2 x 10 -8 4 × 10 -6 1 x 10 -7

ps

3 x 10 -5

3 x 10 -4

3 x 10 -6

b

3 x 10-6

3 x 10-5

3 x 10-7

Table 4.8. Some Component Repair Parameters of a Tandem Computer

Parameter p k ps b

Repair priority 5 7 6 10

Repair rate, hr -1 30 30 30 15

Component type

d f

9 8

30 30

Table 4.9. Some System Reconfiguration Parameters of a Tandem Computer

Specification name

Parameter PD_to_PS KD_to_KS DD_to_.DS BD_to_S

Component type p k d b

Reconfiguration coverage 0.999999 0.99999975 0.99999975 0.99999975

Reconfiguration priority 1 2

Reconfiguration rate, hr -1 1.8 x 10 3 7.2 × 10 3

3 4

25 7.2 × 10 3

Table 4.10. Reliability Model Statistics for a Tandem Computer

Statistic Manual ARM

ASSIST file lines 157 794

Model generation time, min 6.46 75.6

11945 12920States

Transitions

Model evaluation time, min

284 121

3.94

314967

8.85

Table 4.11. Probability-of-Failure Results for a Tandem Computer

Measure Manual

1.84026 x 10 -5

ARM

1.7866 x 10 -5

Difference

5.366 x 10 -7Lower bound

Upper bound 2.10696 x 10 -5 2.05823 × 10 -5 4.873 x 10 -7

Percentage

2.92

2.31
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controller board kb, a power supply ps, and a module

bus b. Each board contains duplicated logic and

an onboard comparator that will stop the board
from transmitting on the bus in case of a mismatch.

Except for the power supply, each component in one

MR forms a dual with the component of the same

type in the other MR. The bus is used to perform the

OR logical function on the output signals of boards

in a dual. Therefore, no reconfiguration takes place
when a board fails. When a component fails in a disk

drive or bus dual, the subsystem is reconfigured into
a simplex.

This Stratus computer requires all subsystems for
it to be operational. Each dual requires that one of

its components be working for it to be operational.

Each MR requires that its power supply be working
for it to be operational.

The logical hierarchy and requirements of the

dual and simplex subsystem classes are shown in fig-
ures 4.18, 4.19, 4.29, and 4.30. The requirements of

the DPL and BPL performance levels are shown in

figures 4.26 and 4.27, respectively. The system recon-

figuration graphs corresponding to the disk drive and

bus subsystems are shown in figures 4.22 and 4.23,

respectively. The remainder of the architecture and

requirements of this Stratus computer are described

by figures 4.31 to 4.36. Figures 4.31 to 4.34 complete

the description of the initial configuration. Fig-
ures 4.35 and 4.36 complete the description of the

initial configuration requirements.

To generate the model, an ASSIST pruning condi-

tion of TNF >= 4 was used without any trimming. To
evaluate the model, a SURE prune level of 1 × 10 -l°

was used. The other parameters used for this Stratus
computer are shown in tables 4.12 to 4.14.

Statistics comparing the manually and ARM-

generated Markov reliability model specifications are
shown in table 4.15. Their probability-of-failure

results are compared in table 4.16.

2b _

I

E

i

Figure 4.31. External structure of a Stratus computer. Figure 4.32. Physical hierarchy of a Stratus computer.

Figure 4.33. Physical hierarchy of the MR subsystem type.
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Figure4.34.Logical hierarchy of a Stratus computer.
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Figure 4.35. Requirements of a Stratus computer. Figure 4.36. Requirements of the MR
subsystem type.



Table 4.12. Some Active Component Parameters of a Stratus Computer

Parameter

Permanent failure rate, hr -1

Transient failure rate, hr -t

Intermittent failure rate, hr -1

pb

5 × 10 -5

5 x 10 -4

5 × 10 -6

Component type

mb kb d
4.--

5× 10 -5 2× 10 -5 4x 10 -5
I

5 x 10 -4 2 x 10 -4 4 x 10-4

5x 10 -6 2x 10 -6 4x 10-6

ps b

3x 10 -5 3x 10 -6

3 x 10 -4 3 x 10 -5

3x 10 -6 3x 10 -T

Table 4.13. Some Component Repair Parameters of a Stratus Computer

Parameter

Repair priority

Repair rate, hr -1

Component type

pb mb kb d ps b

5 4 6 7 3 8

30 30 30 30 30 15

Table 4.14. Some System Reconfiguration Parameters of a Stratus Computer

Specification name

Parameter DD_to-DS BD_to_BS

Component type d b

Reconfiguration coverage 0.99999975 0.99999975

Reconfiguration priority 1 2

Reconfiguration rate, hr -1 25 7.2 x 103

Table 4.15. Reliability Model Statistics for a Stratus Computer

Statistic Manual ARM

ASSIST file lines 155 1472

Model generation time, min 4.2 58.88

States 8197 10 462

Transitions 193 790 248109

Model evaluation time, min 3.13 8.37

Table 4.16. Probability of Failure Results for a Stratus Computer

Measure Manual ARM Difference Percentage

Lower bound 8.0522 × 10 -5 7.53168 × 10 -5 5.2052 × 10 -6 6.46

Upper bound 9.03802 x 10 -5 8.85121 × 10 -5 1.8681 × 10 -6 2.07
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5. Analysis

The next three subsections analyze the assump-

tions, utility, and performance of ARM. Sub-

section 5.4 discusses how ARM might be validated.

Subsection 5.5 gives some lessons learned from using
ARM.

5.1. Summary of Assumptions

The purpose of this subsection is to make sure

that the potentiM users of the ARM approach to re-
liability modeling are aware of the assumptions that

are inherent in it. The user is responsible for deter-

mining whether those assumptions are applicable to

the system whose reliability they want to estimate or

the error they introduce is acceptable given the re-
liability and accuracy the system requires. If any of

the following six assumptions are not true, the result
will be conservative:

1. It is assumed that components which commu-

nicate and are critical (i.e., required for the

system to be operational) must be able to

continue communicating.

2. A transition that reconfigures components

and/or subsystems in or out of the system

is assumed to describe sequential processes.

For example, if there are n faults in one or

more subsystems of the same type with recov-
ery rate p, the rate at which one of the faulty

components is replaced by a spare is assumed

to be p not np. Typically, these transitions

are fast, in which case this assumption being
false would have little effect.

3. A rate that characterizes the failure behavior

of a component is assumed to describe con-

current processes. For example, if there are
n working components of the same type with

permanent failure rate )_ the rate at which

one of them fails permanently is assumed to
be hA.

4. It is assumed that when a component in a log-
ical subsystem fails, it can only be replaced by

a component that is equivalent in terms of its

type and its connections to other components.

5. Components that depend on a component
that has a soft fault are assumed to have failed

permanently.

6. It is assumed that repaired components be-

come spares and that they are not used to

restore a subsystem that was retired or whose

redundancy had been diminished.

The following four assumptions are not strictly

true. However, they are often close enough in

practice to be used to simplify the analysis:

7. The failure processes of different components

are assumed to be independent of one another.

8. Each failure process is assumed to follow an
exponential distribution.

9. Numeric parameters are assumed to be

independent of the system state.

10. The transition probability of a potentially
general transition is assumed to be the same

against any competing fast exponential
transitions.

To evaluate a model specified by ARM using
SURE and get close bounds on the probability of

failure, the following three assumptions must be met:

11. The rate at which an intermittent fault goes
from benign to active is assumed to be slow.

12. The coverage c and rate p specified for tran-
sitions that could have been general must be

such that the successful transition rate pc and

the system failure transition rate p(1 - c) that
they produce are either slow or fast. If the

product of a transition rate and the mission

time is less than 0.01, it is slow, and if it is

greater than 100, it is fast.

13. The following are assumed to be fast:

a. Recovery transitions

b. Reconfiguration transitions

c. Repair transitions

If the system components do not meet assump-

tion 11, the system's probability of failure due to in-

termittent faults can be calculated by first estimating
or measuring, with fault injection experiments, the

recovery and reconfiguration times for intermittent
faults and then using those times in a model in which

the components fail permanently at the intermittent
fault arrival rate. A transition that does not meet

assumption 12 can be specified as a general transi-

tion with a mean and standard deviation of 1/p, but

then it cannot compete with other potentially gen-
eral transitions. Assumptions 12, 13a, and 13b do

not severely restrict the systems that can be modeled
because most systems meet them to achieve their reli:

ability requirements. However, assumption 13c is not

usually true. The PAWS or STEM programs can be

used to evaluate models that do meet assumptions 11
through 13.
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5.2. Utility

As demonstrated in section 4, the major goals
given for the GUI in section 2 were achieved. The

GUI is quite general in that all the redundancy tech-
niques defined in subsection 1.1 can be accommo-

dated. It makes use of physical and logical hierar-

chies. The GUI also uses subsystem classes and types
to reduce the number of subsystems that need to be
defined.

The input from each GUI window, whether it be a

graph or a set of parameters, is stored in a separate

file. A single file can be part of the description of
more than one system. A file can also be edited with

the GUI to produce similar files without having to
create them from scratch. The files used to describe

the systems used as examples in section 4 will be

available to the ARM user so that they may be

reused in this manner. Sharing files can be very
useful because, as demonstrated in section 4, many

systems use the same subsystem classes and types.
Even without reusing files, an experienced user could

describe each of the systems used as examples in
section 4 in approximately 1 hour.

The GUI is an alternative to learning the ASSIST

language and using it to manually specify the relia-

bility model. Subsection 5.2.1 illustrates how simple
changes in the system description given through the

GUI would require changing a large percentage of a
manual ASSIST file. Subsection 5.2.2 illustrates how

easy and natural it is to make architectural changes
for design tradeoff studies using the GUI.

5.2.1. Adding System Characteristics

This subsection compares what it takes to make

a simple axidition to a system description given
through the GUI versus the corresponding percent-
age of changes and additions to a manual ASSIST

file. The example system used for these additions is
the Stratus computer described in subsection 4.2.2.2

but without dependencies between components, im-

perfect coverage, transient and intermittent faults,
and repair.

Dependencies between components were added

by giving the hierarchy and requirements of the

MR physical subsystem type and the system phys-

ical hierarchy. Imperfect coverage, transient and in-

termittent faults, and repair were added by sim-
ply changing the corresponding parameter values.

The effect of these additions, described in subsec-
tion 4.2.2.2, on a manual ASSIST file is shown in ta-

ble 5.1. The model specifications for these additions

were also generated by ARM to validate the manually

generated specifications. The probability-of-failure

results calculated with the manual and ARM model

specifications are compared in table 5.2.

5.2.2. Performing Design Tradeoffs

The following variations of the sextuple SIFT
presented in subsection 4.2.1 were considered:

1. One quintuple plus one spare

2. One quad plus two spares

3. One triad plus three spares

4. One dual plus four spares

5. Two duals plus two spares

6. Three duals

7. Two triads

In addition to the parameter values used for the

sextuple SIFT, the following parameter values were

used for the other variations of SIFT: a coverage
of 1, a priority of 1, and a rate of 3.6 × 103 for the

spare and subsystem recoveries; and a failure rates

factor of 1 and a detectable fraction of 1 for the spare
components.

The quintuple SIFT required the same graphs

as the sextuple SIFT except for the ST(x) logical
subsystem class hierarchy and requirements and the
PST_to_PQT system reconfiguration. Of the remain-

ing graphs, only two had to be modified to replace
ST by QT in the system logical hierarchy and remove
ST(p) from the system requirements.

The quad SIFT required the same graphs as the
quintuple SIFT except for the QT(x) logical sub-

system class hierarchy and requirements and the
PQT_to_PQ system reconfiguration. Of the remain-

ing graphs, only two had to be modified to replace

QT by Q in the system logical hierarchy and remove
QT(p) from the system requirements.

The one-triad SIFT required the same graphs as

the quad SIFT except for the Q(x) logical subsystem

class hierarchy and requirements and the PQ_to_PT

system reconfiguration. Of the remaining graphs,
only two had to be modified to replace Q by T in

the system logical hierarchy and remove Q(p) from
the system requirements.

The one-dual SIFT required the same graphs

as the one triad SIFT except for the T(x) logical
subsystem class hierarchy and requirements and the

PT_to_PND system reconfiguration. Of the remain-

ing graphs, only two had to be modified to replace

T by ND in the system logical hierarchy and remove
T(p) from the system requirements.
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Table 5.1. Effect of Simple Changes in the System Description
on a Manual ASSIST File

Declaration lines, percent

Added

Control line, percent

Changed AddedAddition Changed

Dependency 0 0 6.67 13.33

Coverage 1 2 20.00 26.67

Transients 1 4 40.00 40.00

Intermittents 1 6 40.00 46.67

Repair 2 2 20.00 126.67

All of above 2 13 46.67 306.67

Table 5.2. Probability of Failure Results for Some Variations

of a Stratus Computer

Addition Bound Manual ARM

None Lower 9.21527 x 10 -7 9.21527 × 10 -7

Dependency

Coverage

Transients

Intermittents

Repair

All of above

Upper 9.6179 x 10 -7

Upper

2.0254 x 10 -6

9.6179 × 10 -7

2.0254 × 10 -6
o=

2.06689 x 10 -6

Lower

Upper 2.06689 x 10 -6

Lower 9.21873 × 10 -7 9.21873 x 10 -7

9.62206 × 10 -7 9.62206 x 10 -7

Lower

Upper

Lower

1.04005 x 10 -5

1.14293 x 10 -5

1.11775 x 10-6

1.18582 x 10 -6

8.97387 × 10 -7

9.64093 x 10 -7

Upper

Lower

1.04005 x 10 -5

1.14293 x 10 -5

1.03363 x 10 -6

1.10316 x 10 -6

8.97377 x 10 -7

9.65213 x 10 -7Upper

Lower 8.0522 x 10 -5 7.53168 x 10 -5

Upper 9.03802 x 10 -5 8.85121 x 10 -5
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Table 5.3. Probability-of-Failure Results for Some Variations of a SIFT Computer

Configuration

One sextuple

One quintuple plus one spare

One quad plus two spares

One triad plus three spares

One dual plus four spares

Two duals plus two spares

Lower bound

7.47849 x 10 -15

7,43369 × 10-15

3.28383 x i0 -m

1.64194 x 10 -10

1.99798 x 10 -3

3.99197 × 10-3

Upper bound

7.76217 x 10-15

7.71588 x 10 -15

3.34341 x I0 -lO

1.67218 x 10 -1°

2.00401 × 10 -3

4.004 x 10-3

Three duals 5.982 x 10 -3 6 x 10-3

Two triads 5.96846 x 10-6 6.01271 x 10-6

The two-dual SIFT and the three-dual SIFT re-

quired the same graphs as the one-dual SIFT except

that in the system logical hierarchy ND was replaced
by 2ND and 3ND, respectively. The two-triad SIFT

required the same graphs as the one-triad SIFT ex-

cept that in the system logical hierarchy T was re-

placed by 2T. The probability-of-failure results for all

of these variations of SIFT are compared in table 5.3.

5.3. Performance

From the results presented in section 4, it is seen

that the ARM approach produces reliability model

specification files with about an order of magnitude
as many lines. This occurs because the current im-

plementation specifies all possible parameters, state

variables, and functions that might be needed to

model the system. Consequently, the time to gener-
ate the model is increased by approximately an order

of magnitude. It may be possible to optimize ARM

to specify only what is actually needed.

From the results presented in section 4, it is
observed that the ARM approach specifies models

with about a factor of 2, at the most, as many states
and transitions. Although this increases the time to

evaluate the model by about a factor of 2, it does

not limit the systems that can be analyzed because

the models can be piped directly into the evaluation

program without having to store them.

Table 5.4 shows the time and virtual memory re-

quired by ARM to read the system description and

specify the model of the systems used as examples
in section 4. These measurements were made on

a Digital Equipment Corporation VAXstation 3100

computer that uses the VMS operating system. The

memory utilization is given in blocks of 512 bytes

of 8 bits. From these measurements and the gener-

ation and evaluation times presented in section 4, it
can be concluded that the time and memory to auto-

matically specify the reliability model are not factors

limiting the systems that can be analyzed.

Table 5.4. ARM Model Specification Performance

System Time, CPUsec Memory

MP 2.60 6668

SIFT 2.02 6540

Tandem 3.24 6924

Stratus 3.82 6924

5.4. Validation

The user of the automated reliability modeling
process proposed in this paper should be aware of its
several sources of errors. The failure rates calculated

with MIL-HDBK-217F (U.S. Department of Defense

1991) can be off by several orders of magnitude,

especially for new technologies or environments for
which there are little data. This can also be true

of the parameters that describe how the system

responds to faults if they are not measured in the
laboratory.

For highly reliable systems, the coverage param-

eter values need to be so close to 1 (e.g., 0.9999999)
that it becomes impractical to measure them. For

that reason, some computer architects have opted to
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prove their system designs and then use coverage pa-

rameter values of 1 (Moser et al. 1987). Coverage can
have a profound effect on the system probability of
failure. This effect is illustrated in table 5.5 for the

version of the SIFT computer presented in section 4.

Table 5.5. Effect of Coverage on the Probability of Failure
of a SIFT Computer

Coverage Lower Bound

7.47849 x 10 -15

Upper Bound

7.76217 × 10-151.0
0.99999999999 6.65572 x 10 -14 6.79125 x 10-14

0.9999999999 5.98266 x 10 -13 6.09357 × 10-13

0.999999999 5.91535 x 10 -12 6.02288 × 10 -12

0.99999999 5.90862 x 10 -11 6.01614 x 10-11

0.9999999 5.90795 x 10 -t° 6.01513 x 10-1°

0.999999 5.90788 x 10 -9 6.01503 x 10-9

0.99999 5.90787 x 10 -8 6.01508 x 10-8

0.9999 5.90786 x 10 -7 6.01562 x 10-7

0.999 5.90776 × 10 -6 6.02104 x 10-6
0.99 5.98368 x 10 -5 6.01487 x 10-5

0.9 5.98234 x 10 -4 6.01352 x 10-4

Other sources of errors are design and implemen-
tation faults in the software tools that specify, gener-

ate, and evaluate the reliability model. Although the
probability of this type of error must be minimized,

experience has shown that the probability of commit-

ting an error when manually performing these tasks

is far greater even for very new tools such as ARM.

If practical, the most desirable method of val-

idation is to formally prove that ARM is correct

and that it has a perfect reliability of 1. However,
manual proofs are lengthy, tedious, and error-prone

(Ramamoorthy and Bastani 1982). Furthermore, au-
tomated proving techniques are still impractical for

realistic programs (Ramamoorthy and Bastani 1982).

As with most software of significant size and

complexity, exhaustive testing is impossible because
there are an infinite number of system descriptions

that could be given to ARM as input. However, thor-

ough testing of all program features can be achieved
to uncover as many software faults as possible and in-

crease user confidence. This testing should combine
black-box and white-box techniques (Myers 1979).

The four application examples presented in section 4
are black-box test cases because only the output Of

the program was considered. The goal of white-box
test cases is to make certain that all parts of the pro-

gram have been exercised.

One of the main difficulties with developing a test

case is defining what the output is expected to be.
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As the software being tested grows in complexity,

so does the task of defining the expected output.

This is especially true for programs that automate

a previously manual task, such as ARM, because the
usual reason the task was automated is that it could

only be done quickly and reliably for simple cases,
as is the case for ARM. This difficulty limits the

number of complex test cases which is practical to

develop. If and when other programs that perform
the same function become available, comparison with

them would be a possible solution to this problem.

In the case of ARM, a way to increase the benefits

provided by the test cases developed is to perform a

sensitivity analysis of each one. This analysis would

ensure that the two models agree not only for a

specific set of parameter values but also for a range
of values. The results of doing this for the version of

the SIFT computer presented in section 4 are shown
in tables 5.6 and 5.7.

Table 5.6. Effect of the Failure Rate on the Probability
of Failure of a SIFT Computer

Failure

rate, hr -1 Bound

1 x 10 -3 Lower

Upper

1 x 10 -4 Lower

Upper

1 x 10 -5 Lower

Upper

Manual ARM

5.77469 x 10 -1° 5.77513 x 10-1°

6.16966 x 10 -I° 6.17013 x 10-1°

7.43383 x 10 -15 7.47849 x 10-15

7.71581 x 10 -15 7.76217 x 10-15

2.63296 x 10 -19 3.08019 x 10-19

2.73023 x 10 -19 3.1934 x 10 -19

Table 5.7. Effect of the Reconfiguration Rate on
the Probability of Failure of a SIFT Computer

Reconfiguration

rate, hr -1 Bound Manual

3.6 x 102 Lower 2.38272 x 10 -i4

Upper 2.7356 × 10-14

3.6 x 103 Lower 7.43383 x 10-15

3.6 x 104

Upper

Lower

Upper

7.71581 x 10-15

ARM

2.79663x 10-14

3.19926 x 10 -14

7.47849 x 10 -15

7.76217 x 10 -15

6.1037 x 10 -15 6.10416 x 10 -15

6.16738 x 10 -15 6.16877 x 10 -15



5.5. Lessons Learned

For most systems, it is essential to specify a

reasonable ASSIST prune condition. This is the

factor that most directly controls the size of the
model generated. It is quicker to start with severe

pruning (e.g., TNF >= 3) and then reduce it (e.g.,
TNF >= 4) until its effect (the evaluation programs

report it as the prunestate bounds) on the probability

of failure bounds reaches some acceptable level (e.g.,

less than 1 percent).

When usingSURE to evaluate the model, the

evaluation time can be reduced by manually selecting

a reasonable SURE prune level. For this type of
pruning, it is also quicker to start with a severe

pruning level (e.g., 1 x 10 -8) and then reduce it

(e.g., 1 × 10 -9) until its effect (SURE reports it as

the sure prune bounds) on the probability of failure

bounds reaches some acceptable level (e.g., less than

1 percent). These two types of pruning can and
should be used in conjunction with each other.

6. Conclusions

This paper has demonstrated that the tedious and

error-prone task of specifying reliability models can

be further automated by graphical representations.

From the results presented in section 4, it can be

concluded that the Automated Reliability Modeling
(ARM) approach produces reliability model specifi-

cation files with approximately an order of magnitude

as many lines. Consequently, the time to generate the

model is increased by about an order of magnitude.
The number of states and transitions, however, in-

creased by a factor of 2 at the most, and the time to

evaluate the model only increased by approximately

a factor of 2. The probability of failure calculated
using ARM specified models was within 7 percent

of that calculated using manually specified models.

With present computers, the size of the specification

file is not a problem. Typical systems have large

models whose model generation time is in the range
of 10 to 100 minutes and whose model evaluation

time is in the range of 1 to 10 hours. Hence, the

modest increase in the model generation and evalua-
tion time will be more than offset by the time saved

in specifying the model, which in very complicated

systems could be months. Therefore, it can be con-
cluded that the ARM approach to automatic reliabil-

ity model specification is an efficient way to evaluate

the reliability of complex fault-tolerant systems.

6.1. Summary of Work and Contributions

The goal of this research and development ef-
fort was to provide the computer architect with

a powerful and easy to use software tool that as-

sumes the burden of an advanced reliability analysis

that considers intermittent, transient, and perma-

nent faults for computer systems of high complex-

ity and sophistication. This paper defined a gen-

eral, high-level system description language (SDL)
that is easy to learn and use, identified and analyzed

the problems involved in the automatic specification

of Markov reliability models for arbitrary intercon-

nection structures at the processor-memory-switch
(PMS) level, and generated and implemented solu-

tions to these problems. The results of this research

have been implemented and experimentally validated

in the ARM program.

The ARM program uses a graphical user interface

(GUI) as its SDL. This GUI is based on a hierarchy of

windows. Some windows have graphical editing ca-
pabilities for specifying the system's communication

structure, hierarchy, reconfiguration capabilities, and

requirements. Other windows have text fields, pull-

down menus, and buttons for specifying parameters
and selecting actions.

The ARM program outputs a Markov reliability
model specification formulated for direct use by pro-
grams that generate and evaluate the model. The

advantages of such an approach are utility to a larger

class of users, not necessarily expert in reliability
analysis, and lower probability of human error in the
calculation.

6.2. Future Work

This work could be extended in several ways. The

most obvious one is to implement reinitializing re-

configurations and mission phase change reconfigu-
rations. An outline of how this might be done has

been given in subsection 3.4. Another possible exten-

sion is to modify the way that repaired components

are currently handled such that they can be used to
restore subsystems that were retired or whose redun-

dancy had been diminished instead of just becoming

spares.

The ARM program could be generalized such that
a subsystem can be degraded by more than two com-

ponents at a time. This program could also be gen-
eralized such that components which depend on a

component that has a soft fault become benign when

the component they depend on becomes benign. An-
other way to generalize ARM would be to allow a

subsystem to be composed of other subsystems.

Further research is needed to describe transi-

tion time distributions that depend on the global
state of the system. Additional work is also needed
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to easily allow competing general transitions. The

competing transition probabilities possibly could be

automatically estimated.

The ARM program could also be extended to au-

tomate the specification of availability models. How-

ever, this automation would require modifying the

present model generation and evaluation tools or

using other ones.

NASA Langley Research Center
Hampton, VA 23681-0001

January 25, 1993
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Appendix

ARM Program Algorithms

This appendix shows the algorithms used by the ARM program.

A1. Symmetry Detection

The function definitions are as follows:

Split_Class (R, C, L): If relation R is not satisfied, it then partitions class C and creates a new class after the
last class L. Returns the number of equivalence classes.

Size (C): Returns the number of elements in the vertex equivalence class C.

Element (E, C): Returns element E of the vertex equivalence class C.

Equivalent (E, C, R): True if element E of class C is equivalent in term_ of relation R to the preceding class
elements.

EquahDegree (E, C): True if element E of class C has the same degree as the preceding elements of class C.

Equal_Neighbor_Classes (E, C): True if element E of class C has the same number of neighbor types in each

class as the preceding elements of class C.

Equivalent (Current_Element, Class, Relation) {

if (Relation == Degree)

return Equal_Degree (Current_Element, Class);

else

return Equal_Neighbor_Classes (Current_Element, Class);

}

Split_Class (Relation, This_Class, Last_Class) {

Split = false;

for (I = 2; I <= Size (This_Class); I++) {

Current_Element = Element (I, This_Class);

if (!Equivalent (Current_Element, This_Class, Relation)) {

if (_Split) {
Split = true;

Last_Class++;

/* Create a new Last_Class with the degree and

neighbor attributes of the Current_Element of This_Class.

}
/* Move the Current_Element of This_Class to the Last_Class.

}
}
return Last_Class;

} /* Split_Class */

Symmetry () {

/* Step 1: Split based on equal type. */

Last_Class = Last_Type;

for (I = I; I <= Last_Class; I++)

/* Add elements of type I to class I. */
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/* Step 2: Split based on equal degree. */

I = i;

while (I <ffiLast_Class) {

Last_Class = Split_Class

I++;

}

(Degree, I, Last_Class);

/* Step 3: Split based on equal neighbor classes, */

New_Last = Last_Class;

Done ffifalse;

while (!Done) {

for (I - I; I <= Last_Class; I++)

New_Last = Split_Class (Neighbors, I, New_Last);

if (Last_Class -ffiNew_Last)

Done = true;

else

Last_Class - New_Last;

} /* Symmetry */

A2. Determining the Subsystem Hierarchies

The variable definitions are as follows:

View: Determines whether the algorithm is dealing with logical subsystems in the initial configuration or

physical subsystems.

Subsystem_Classes[V]: Number of subsystem classes in view V.

Subsystem_Types[C, V]: Number of subsystem types of class C in view V.

Subsystems[C, T, V]: Number of subsystems of type T and class C in view V.

Class_Hierarchy[C, V]: True if the hierarchy of subsystem class C in view V was obtained from the system

hierarchy or a separate file.

The function definitions are as follows:

Get_Class_Hierarchy (C, V): Returns true if it is able to obtain the hierarchy of subsystem class C in view V

from the system hierarchy or a separate file.

Read_Subsystem_Hierarchy (C, T, S, V): Reads the hierarchy file of subsystem S of type T and class C in

view V which assigns specific components to the subsystem.

Determine_Subsystem_Hierarchy (C, T, S, V): Determines the hierarchy of subsystem S of type T and class C

in view V from the hierarchy of its subsystem class and the component type arguments, if any, of its subsystem

type.

Subsystem_Hierarchies (View) {

for (C = O; C < Subsystem_Classes[View]; C++) {

Class_Hierarchy[C, View] = Get_Class_Hierarchy (C, View);

if (!Class_iierarchy[C, View])

for (T - O; T < Subsystem_Types [C, View]; T++)
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for (S = 0; S < Subsystems[C, T, View]; S++)

Read_Subsystem_Hierarchy (C, T, S, View))

}
for (C = O; C < Subsystem_Classes[Vie'w]; C++)

if (Class_Hierarchy[C, View])

for (T ffiO; T < Subsystem_Types[C, View]; T++)

for (S = 0; S < Subsystems[C, T, View]; S++)

Determine_Subsystem_Hierarchy (C, T, S, View))

} /* Subsystem_Hierarchies */

A3. Specifying Potentially General Transitions

The variable definitions are as follows:

Transitions[P]: Number of transitions of priority P.

Condition[P, T]: Transition condition T of priority P.

Destination[P, T]: Destination state T of priority P.

Rate[P, T]: Transition rate expression T of priority P.

LP: Lowest priority.

The function definition is as follows:

Condition_Or (I): Returns true if any of the transition conditions of priority I are true.

if (Condition_0r (1))

for (T = O; T < Transitions[i]; T++)

if (Condition[i, T])

tranto Destination[l, T] by Rate[l, T];

else if (Condition_Dr(2))

for (T = O; T < Transitions[2]; T++)

if (Condition[2, T])

tranto Destination[2, T] by Rate[2, T];

else if (Condition_Or(LP))

for (T = O; T < Transitions[LP]; T++)

if (Condition[LP, T])

tranto Destination[LP, T] by Rate[LP, T];
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